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Widespread code reuse allows vulnerabilities to proliferate among a vast variety of firmware. There is an
urgent need to detect these vulnerable codes effectively and efficiently. By measuring code similarities, AI-
based binary code similarity detection is applied to detecting vulnerable code at scale. Existing studies have
proposed various function features to capture the commonality for similarity detection. Nevertheless, the
significant code syntactic variability induced by the diversity of IoT hardware architectures diminishes the
accuracy of binary code similarity detection. In our earlier study and the tool Asteria, we adopted a Tree-
LSTM network to summarize function semantics as function commonality, and the evaluation result indicates
an advanced performance. However, it still has utility concerns due to excessive time costs and inadequate
precision while searching for large-scale firmware bugs.

To this end, we propose a novel deep learning-enhancement architecture by incorporating domain
knowledge-based pre-filtration and re-ranking modules, and we develop a prototype named ASTERIA-PRO
based on Asteria. The pre-filtration module eliminates dissimilar functions, thus reducing the subsequent
deep learning-model calculations. The re-ranking module boosts the rankings of vulnerable functions among
candidates generated by the deep learning model. Our evaluation indicates that the pre-filtration module cuts
the calculation time by 96.9%, and the re-ranking module improves MRR and Recall by 23.71% and 36.4%, re-
spectively. By incorporating these modules, ASTERIA-PRO outperforms existing state-of-the-art approaches
in the bug search task by a significant margin. Furthermore, our evaluation shows that embedding baseline
methods with pre-filtration and re-ranking modules significantly improves their precision. We conduct a
large-scale real-world firmware bug search, and AsTERIA-PRO manages to detect 1,482 vulnerable functions
with a high precision 91.65%.
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1 INTRODUCTION

Code reuse is very popular in IoT firmware to facilitate its development [63]. Unfortunately, code
reuse also introduces vulnerabilities concealed in the original code into a variety of firmware [22].
The security and privacy of our lives are seriously threatened by the widespread use of these
firmware [64]. Even though the vulnerabilities have been publicly disclosed, there are a large
number of firmware versions that still contain them due to delayed code upgrades or code
compatibility issues [18]. Recurring vulnerabilities, often referred to as “N-day vulnerabilities,”
cannot be detected through symbol information such as function names, because this type of
information is usually removed during firmware compilation. Additionally, the source code of
firmware is typically unavailable as IoT vendors only provide binary versions of their firmware.

To this end, binary code similarity detection (BCSD) is applied to quickly find homologous
vulnerabilities in a large amount of firmware [23]. The BCSD technique focuses on determining the
similarity between two binary code pieces. As for the vulnerability search, BCSD looks for other
vulnerable functions that are similar to one that is already known to be vulnerable. In addition to
the vulnerability search, BCSD has been widely used for other security applications such as code
plagiarism detection [16, 48, 56], malware detection [41, 42], and patch analysis [28, 34, 62]. Despite
many existing research efforts, the diversity of IoT hardware architectures and software platforms
poses challenges to BCSD for IoT firmware. There are many different instruction set architec-
tures (ISA) for [oT firmware, such as ARM, PowerPC, X64, and X86. The instructions are different,
and the rules, such as the calling convention and the stack layout, also differ across different ISAs.
It is non-trivial to find homologous vulnerable functions across various architectures.

BCSD methods can be generally classified into two categories: (i) Dynamic analysis-based
methods and (ii) static analysis-based methods. The methods based on dynamic analysis capture
the runtime behavior as function semantic features by running target functions, where the
function features can be I/O pairs of function [54] or system calls during program execution
[29], and so on. They are not scalable for large-scale firmware analysis, since running firmware
requires specific devices and emulating firmware is also difficult [20, 35, 72]. The methods based
on static analysis mainly extract statistical features from assembly code. An intuitive way is to
calculate the edit distance between assembly code sequences [24]. They cannot be directly applied
across architectures, since instruction sets are totally distinct. Architecture-independent statistical
features of functions are proposed for similarity detection [31]. These features are less affected
across architectures such as the number of function calls, strings, and constants. Furthermore, the
control flow graph (CFG) at the assembly code level is utilized by conducting a graph isomor-
phism comparison for improving the similarity detection [31, 33]. Based on statistical features and
CFG, Gemini [65] leverages the graph embedding network to encode functions as vectors for sim-
ilarity detection. With the application of deep learning models in programming language analysis,
various methods have recently appeared to employ such models to encode binary functions in
different forms and calculate function similarity based on function encoding [46, 50, 53, 61]. Static
analysis-based methods are faster and more scalable for large-scale firmware analysis but often

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 1. Publication date: November 2023.


https://doi.org/10.1145/3604611

Asteria-Pro: Enhancing Deep Learning-based BCSD by Incorporating Domain Knowledge  1:3

produce false positives due to the lack of semantic information. Since homologous vulnerable
functions in different architectures usually have the same semantics, a cross-architecture BCSD
should be able to capture the semantic information about functions in a way that can be scaled.

In our previous work Asteria [70], we first utilized the Tree-LSTM network to encode the
AST in an effort to capture its semantic representation. In particular, Tree-LSTM is trained us-
ing a Siamese [37] architecture to understand the semantic representation by feeding homologous
and non-homologous function pairs into the Tree-LSTM network. Consequently, the Tree-LSTM
network learns function semantic representations to distinguish between homologous and non-
homologous functions. To further improve the accuracy, we also use the call graph to calibrate
the AST similarity. Precisely, we count callee functions of target functions in the call graph to
measure the difference in function calls. The final function similarity is determined by calibrating
the AST similarity with the disparity in function calls. In our previous evaluation, Asteria outper-
formed the available state-of-the-art methods, Gemini and Diaphora, in terms of accuracy. The
evaluation results demonstrate the superiority of function semantic extraction by encoding AST
with the Tree-LSTM model. However, encoding the AST incurs a clear temporal cost for Asteria.
According to our earlier research [70], the entire AST encoding process takes about one second.
When Asteria is applied to vulnerability detection, where there are numerous functions to perform
similarity calculations given a vulnerable function, the time cost becomes unacceptable. Since the
majority of candidate functions are non-homologous, there is room for enhancing the efficiency of
Asteria. In other words, non-homologous candidate functions differ from vulnerable functions in
certain characteristics that we can exploit to skip the majority of non-homologous functions more
effectively. In addition, the evaluations do not align with the approaches used in the majority of
real-world vulnerability detection efforts [33, 45, 51, 65, 73], including our prior study Asteria. Vul-
nerability detection involves retrieving homologous (vulnerable) functions from a large pool of
functions. Consequently, their performance in detecting vulnerabilities is insufficiently described.
It is necessary to evaluate the performance of Asteria on the vulnerability search task. Moreover,
according to the result in the real world vulnerability detection [70], Asteria suffers from high false
positives, which affects its effectiveness in reality.

There are two main challenges that hinder Asteria from being practical for large-scale vulnera-
bility detection:

e Challenge 1 (C1). It is challenging to filter out the majority of non-homologous functions
before encoding ASTs, while retaining the homologous ones, to speed up the vulnerability-
detection process.

e Challenge 2 (C2). It is challenging to distinguish similar but non-homologous functions.
Despite Asteria’s high precision in homologous and non-homologous classification, it still
yields false positives when distinguishing functions with similar ASTs.

We design ASTERIA-PRrO by introducing domain knowledge as two answers, A1 and A2 to over-
come these two challenges. Our fundamental concept is that introducing inter-functional domain
knowledge will helps ASTERIA-PRO achieve greater precision combined the intra-functional seman-
tic knowledge deep learning model learned. ASTERIA-PRO consists of three modules: (1) Domain
Knowledge-based (DK-based) pre-filtration, (2) Deep Learning-based (DL-based) similarity
detection, and (3) DK-based re-ranking, among them DL-based similarity detection is basically
based on Asteria. Domain knowledge is fully exploited for different purposes in DK-based pre-
filtration and re-ranking. In pre-filtration module, ASTERIA-PRO aims to skip as many as possible
non-homologous function by comparing lightweight robust features (A1). Meanwhile, filtration is
required to retain all homologous functions. To this end, we conducted a preliminary study into
the filtering performance of several lightweight function features. According to the findings of the
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study, we propose a novel algorithm that successfully employs three distinct function features in
the filter. In the re-ranking module, ASTERIA-PRO confirms the homology of functions by compar-
ing call relationships (A2), based on the assumption that functions designed for distinct purposes
have different call relationships.

Our evaluation indicates that ASTERIA-PRo significantly outperforms existing state-of-the-art
methods in terms of both accuracy and efficiency. Compared with Asteria, ASTERIA-PRO success-
fully cuts the detection time of Asteria by 96.90% by incorporating DK-based pre-filtration module.
In the vulnerability-search task, ASTERIA-PRO has the shortest average search time than other base-
line methods. By incorporating DK-based re-ranking, AsTERIA-PRO manages to enhance the MRR
and Recall@Top-1 by 23.71% and 36.4%, to 90.8% and 89.6%, respectively. We have also applied our
enhancement framework to embed baseline methods, and the evaluation results demonstrate a sig-
nificant improvement in the precision of these methods. AsTERIA-PRroO identifies 1,482 vulnerable
functions with a high precision of 91.65% by conducting a large-scale real-world firmware vulnera-
bility detection utilizing 90 CVEs. Moreover, the detection results of CVE-2017-13001 demonstrate
that AsTERIA-PRO has an advanced capacity to detect inlined vulnerable code.

Our contributions are summarized as follows:

e We conduct a preliminary study to demonstrate the effectiveness of various simple function
features in identifying non-homologous functions.

e To the best of our knowledge, it is the first work to propose incorporating domain knowl-
edge before and after deep learning models for vulnerability detection optimization. We
implement the domain knowledge-based pre-filtration and re-ranking algorithms and equip
Asteria with them.

e The evaluation indicates the pre-filtration module significantly reduces the detection time,
and re-ranking module improves the detection precision by a fairly amount. The AsTERIA-
Pro outperforms existing state-of-the-art methods in terms of both accuracy and efficiency.
In evaluation 8.5, we find that the performance of distinct BCSD methods may vary widely
in different usage scenarios.

e We demonstrate the utility of ASTERIA-PRO by conducting a large-scale, real-world firmware
vulnerability detection. ASTERIA-PRO manages to find 1,482 vulnerable functions with a high
precision of 91.65%. We analyze the vulnerability distribution in widely-used software from
various IoT vendors to illustrate our inspiring findings.

2 BACKGROUND

We first briefly describe the AST structure adopted in this work, followed by a demonstration of the
AST holding a more stable structure than CFG across architectures. Then we introduce the Tree-
LSTM model utilized in AST encoding. Finally, the broad problem definition for the application of
BCSD to bug search is given.

2.1 Abstract Syntax Tree

2.1.1 AST Description. An AST is a tree representation of the abstract syntactic structure of
code in the compilation and decompilation processes. This work focuses on the ASTs extracted by
decompiling binary functions. Different subtrees in an AST correspond to different code scopes in
the source code. Figure 1 shows a decompiled AST corresponding to the source code of function
histsizesetfnin zsh v5.6.2 on the left. The zsh is a popular shell software designed for inter-
active use, and the function histsizesetfn sets the value of a parameter. The lines connecting
the source code and AST in Figure 1 show that a node in the AST corresponds to an expression
or a statement in the source code. A variable or a constant value is represented by a leaf node
in AST. We group nodes in an AST into two categories: (i) Statement nodes and (ii) expression
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Table 1. Statements and Expressions in ASTs

Node Type Label Note
if 1 if statement

block 2 instructions executed sequentially
for 3 for loop statement

while 4 while loop statement

Statement switch 5 switch statement
return 6 return statement
goto 7 unconditional jump
continue 8 continue statement in a loop
break 9 break statement in a loop

assignments, including assignment, assignment after or,
xor, and, add, sub, mul, div

comparisons including equal, not equal, greater than, less
than, greater than or equal to, and less than or equal to.
arithmetic operations including or, xor, addition,
subtraction, multiplication, division, not, post-increase,
post-decrease, pre-increase, and pre-decrease

others including indexing, variable, number, function call,
string, asm, and so on.

asgs 10~17
cmps 18~23

Expression
ariths 24~34

other 34~43

We count the statements and expressions for nodes in ASTs after the decompilation by IDA Pro and list the common
statements and expressions. This table can be extended if new statements or expressions are introduced.

void

histsizesetfn(UNUSED(p), long v) block
{
if(v<1)  YroommmmmmomomTTTTTTTTTY if -return
else le—block block!  call
histsiz = vi) N | 4 |
histsiz = v; var num___asg---~~"asg num
-------------- SN N
) var num var var

Fig. 1. Source code of function histsizesetfn and the corresponding decompiled AST of x86 architecture.

nodes according to their functionalities shown in Table 1. Statement nodes control the function
execution flow while expression nodes perform various calculations. Statement nodes include if;
for, while, return, break, and so on. Expression nodes include common arithmetic operations and
bit operations.

2.1.2  AST Structure Superiority. Both CFG and AST are structural representations of a function.
The CFG of a function contains the jump relationships between basic blocks that contain straight-
line code sequences [38]. Though CFG has been used for similarity measurement in BCSD [31],
David et al. [24] demonstrated that CFG structures differ significantly across different architectures.
We observe that AST shows better architectural stability across architectures compared with CFG.
It is because AST is generated from the machine-independent intermediate presentations, which
are disassembled from assemble instructions during the decompilation process [21]. Figure 2 de-
picts the evolution of ASTs and CFGs for the x86 and ARM architectures, respectively. For the
CFGs from x86 to ARM, we observe that the number of basic blocks changes from 4 to 1, and
the number of assembly instructions has changed a lot. However, the ASTs, which are based on
a higher-level intermediate representation, differ very slightly between x86 and ARM, with the
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block block
/i’f\ retl‘.lrn if ret‘um
bl(‘)ck bl(‘>ck CE‘IH bl(‘mk bl?ck ca‘ﬂl
var num [ asg asg num var num [ asg asg num
N N
var numj|var var var var [var num
(a) AST for x86 platform (b) AST for ARM platform
sub esp, Och
mov eax, [esp+Och+arg_4]
test eax, eax
jle  shortloc_809F187
4
mov  ds:histsiz, eax loc_809F187: e
mov  ds:histsiz, | LDR  R3, =histsiz
jmp  short loc_809F17E CMP  RI1,#0
MOVLER2, #1
loc_809F17E: STRGT RI, [R3]
call resizehistents STRLE R2, [R3]
add  esp, Och B resizehistents
retn
(c) CFG for x86 platform (d) CFG for ARM platform

Fig. 2. ASTs and CFGs of the function histsizesetfn under different architectures.

differences highlighted by blue boxes. In addition, AST maintains the semantics of functionality,
making it an ideal structure for cross-platform similarity detection.

2.2 Tree-LSTM Model

In natural language processing, Recursive Neural Networks (RNN) are widely applied and
perform better than Convolutional Neural Networks [71]. RNNs take sequences of arbitrary
lengths as inputs considering that a sentence can consist of any number of words. However,
standard RNNs are not capable of handling long-term dependencies due to the gradient vanishing
and gradient exploding problems. As one of the variants of RNN, Long Short-Term Memory
(LSTM) [39] has been proposed to solve such problems. LSTM introduces a gate mechanism
including the input, forget, and output gates. The gates control the information transfer to avoid
the gradient vanishing and exploding (calculation details in Section 6.1). Nevertheless, LSTM
can only process sequence input but not structured input. Tree-LSTM is proposed to process
tree-structured inputs [58]. The calculation by Tree-LSTM model is from the bottom up. For each
non-leaf node in the tree, all information from child nodes is gathered and used for the calculation
of the current node. In sentiment classification and semantic relatedness tasks, Tree-LSTM
performs better than a plain LSTM structure network. There are two types of Tree-LSTM pro-
posed in the work [59]: Child-Sum Tree-LSTM and Binary Tree-LSTM. Researchers have shown
that Binary Tree-LSTM performs better than Child-Sum Tree-LSTM [59]. Since the Child-Sum
Tree-LSTM does not take into account the order of child nodes, while the order of statements in
AST reflects the function semantics, we use the Binary Tree-LSTM for our AST encoding.

2.3 Function Call Compilation Optimization

There are two main types of function call compilation optimization that can impact binary code
similarity analysis: Function inline and intrinsic functions.

Function inline. Function inline is a compiler optimization technique where the code of a called
function is inserted directly into the calling function, rather than making a separate function call.
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This can improve program performance by reducing the overhead of function calls and improving
cache utilization. The decision to inline a function is typically made by the compiler based on
various factors such as function size, frequency of calls, and available register space.

Intrinsic function. Intrinsic functions (also known as built-in functions) are special functions
that are implemented by the compiler itself and are mapped to a single instruction or a sequence
of instructions in the target architecture. These functions provide low-level access to the hardware
and are used to implement various low-level operations, such as arithmetic, bit manipulation, and
memory access. Intrinsic functions are often used in performance-critical code, where the use of
low-level instructions can lead to significant speedups compared to equivalent code written in a

higher-level language.
3 PRELIMINARY STUDY

This study aims to assess and uncover accessible function features that are effective at identifying
non-homologous functions to guide our pre-filtration design. To evaluate the features, we prepare
the code base and incorporate a number of metrics (Section 3.1). We focus primarily on evaluating
and comparing prevalent conventional features present in existing remarkable works (Section 3.2).

3.1 Evaluation Benchmark

3.1.1 Dataset. To derive robust features, we compile a large collection of binaries from 184
open source software (0SS), including widely used OpenSSL, FFmpeg, Binutils, and so on. Since
our tool aims to conduct similarity detection across different architectures, we compile these open
source software for four common architectures: X86, X64, ARM, and PowerPC. In addition, we
align the default compilation settings during compilation with real-world usage. After compilation,
numerous test binaries with “test” or “buildtest” as a prefix or suffix are generated to test the
software’s functionality. These test binaries are removed from the collection, because (1) their
functions are simple and comprise only a few lines of code, and (2) they do not participate in the
real execution of software function. After removal, the binary collection retains 1,130 binaries, or
226 for each architecture.

We create a large dataset consisting of pairs of homologous and non-homologous functions
based on their function names. Function names are retained in the software after compilation,
allowing us to construct the dataset. To create homologous function pairs, we select binary func-
tions with the same function names within the same software. However, functions with different
names were considered non-homologous. For example, if function F is present in the source code,
then compilation would generate four versions of binary functions for different instruction set
architectures: Fygs, Fx4> Farm, and Fppc. These variants of functions are considered homologous
to each other. We extract a total of 529,096 binary functions, comprising 132,274 unique functions
for each architecture. To avoid overfitting in final evaluation, we randomly selected 40,111 func-
tions from each architecture. Among them, we randomly chose n functions as source functions to
evaluate the filtering capability of diverse features. For each source function FBX, we constructed
a pool of candidate functions consisting of M randomly selected binary functions and three ho-
mologous functions of F )lz. As aresult, each source function F )’? forms three homologous pairs and
M non-homologous pairs.

3.1.2  Metrics. True-positive rate (TPR) and false-positive rate (FPR) are utilized to
evaluate the filtering capability of various features. TPR demonstrates the feature’s capacity to
retain homologous functions, while FPR demonstrates its capacity to exclude non-homologous
functions. In the subsequent filtering phase, our goal is to identify features that can filter out
non-homologous functions as effectively as possible (low FPR) while maintaining all homologous

functions (very high TPR).
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For a source function F)J?, all function pairs in candidate function pool are measured by various
feature similarity scores. The function pairs with similarity scores below a threshold value T are
filtered. In the remaining function pairs, the homologous function pairs are regarded as true posi-
tives TP while the non-homologous function pairs are regarded as false positives FP. The following
equations illustrate how we calculate these three metrics for various features:

e
TPR = T, (1)
n
FPR = _ Ui PP @)
Cax(Mx4-4)

3.2 Candidate Features Evaluation

We aim to identify the most efficient and effective filter features by evaluating existing features pro-
posed in previous studies and their variants. Based on the evaluation results, we select and improve
candidate features to meet the filter requirements, which is to remove as many non-homologous
functions as possible while retaining all homologous ones.

3.2.1 Feature Selection. We gather basic features from prior research [31, 65, 66, 70] and cate-
gorize them into two groups: CFG-family features and AST-family features.

The CFG-family features include four types of numeric features: The number of instructions
(No. Instruction), arithmetic instructions (No. Arithmetic), call instructions (No. Callee), and logical
instructions (No. Logic), along with two constant features: String constants (String Constant) and
numeric constants (Numeric Constant) [31]. We also introduce a newly proposed feature called the
named callee list (NCL) to capture the text sequence information of callee functions that retain their
function names due to dynamic linking. In particular, NCL is designed to be a list of callee functions
that are either imported or exported functions. These functions retain their original names as they
are used as identifiers to reference the functions in other parts of the code.

Since AST is necessary for model encoding calculation (Section 6), we summarize three syntactic
features as AST-family features:

e No. AST Nodes: The number of AST nodes.

e AST Node Cluster: The number of different node types in the AST. For example, in Figure 1,
the AST node cluster is denoted as [block : 3,if : 1,return : 1,call : 1,num : 3,block :
2,asqg : 2,var : 4,le : [1].

o AST Fuzzy Hash: We first generate a node sequence by traversing the AST preorder. Then,
we apply the fuzzy hash algorithm [44] to generate the fuzzy hash of the AST.

3.22  Feature Similarity Calculation. The format of features divides them into two types with
distinct similarity calculations: value type and sequence type. Value type features consist of No.
Instruction, No. Arithmetic, No. Logic, No. Callee, and No. AST nodes. Sequence type features consist
of Numeric Constant, String Constant, AST Node Cluster, AST Fuzzy Hash, and NCL. For value type
features, we use the relative difference ratio (RDR) as shown below for similarity calculation:

abs(Vi — Vz)
max(V1, V)’
where Vi, V, are feature values. For each sequence-type feature, we first sort the feature’s items

and then concatenate them into a single sequence. Then, we employ the common sequence ratio
(CSR) based on the longest common sequence (LCS) as follows:

2 X LCS(S1, S5)
CSR(S,S,) = ————>2 22 4
(51.52) len(S) + len(S;)” )

RDR(Vy,V3) =1 — (3)
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Fig. 3. ROC curves for features. Fig. 4. Fscore of features. Fig. 5. Time costs of similarity calcula-
tion for different features.

where Si, S; are feature sequences, and function LCS(:, -) returns the length of the longest common
sequence between S;,Sz. The above two equations are used for similarity calculation of various
features.

3.2.3 Evaluation Results. In the evaluation, the values for n and M in Section 3.1.2 are set to
1,000 and 20,000, respectively. As depicted in Figure 3, TPRs and FPRs calculated for each feature
under various thresholds are presented as a receiver operating characteristic (ROC) [74] curve.
Additionally, we compute the area under the ROC curve (AUC), which reflects the feature’s
ability to distinguish between homologous and non-homologous functions. The AUC values of
the features extracted from AST (i.e., No. AST Nodes, AST Node Cluster, and AST Fuzzy Hash) are
high, as presented in the Figure 3. However, when the TPR is high, they generate a high FPR.

We observe in Figure 3 that at high TPR (0.996), the No. Callee feature produces a relatively
lower FPR (0.111). Recalling the requirement of the filtering phase, we aim to select features with
a low FPR at a very high TPR. Features with high AUC do not necessarily meet our objective. For
example, the feature AST Node Cluster has a higher FPR (0.47) than the feature No. Callee (FPR =
0.111) under the same TPR (0.996), even though the feature AST Node Cluster has a higher AUC
(0.978) than the feature No. Callee (AUC = 0.944). In this regard, we propose a new metric, Fscore,
which indicates a high TPR and a lower FPR:

1

 E—
TPR + FPR

Fscore = (5)

Figure 4 plots the Fscore curves of various features at different similarity thresholds. The results
indicate that the “NCL” feature has the highest Fscore 0f 0.92 among all the candidate features. It
achieves a high true-positive rate at a low false-positive rate, with a relatively high AUC score of
0.963. The “No. Callee” feature performs slightly worse, with an AUC score of 0.944 and an Fcore
0f 0.902. The “String Constant” feature shows a relatively high F;c,,e at a very low threshold (e.g.,
0.01), since it decisively determines the homology of functions. In particular, if two functions have
the same strings, then they are highly likely to be homologous. Although the Fcor. does not
increase as the threshold increases, it is because some functions do not include string constants,
which limits the number of true-positive pairs. Based on the filtering performance of the candidate
features, we have decided to use NCL along with No. Callee and String Constant for our prefiltering
design. Figure 5 depicts the time costs associated with similarity calculations for various features.
Clearly, sequence type features require more time than value type features. Nonetheless, their time
consumption falls within an acceptable range of magnitudes. At least 10° exact calculations can
be completed every second.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 1. Publication date: November 2023.



1:10 S. Yang et al.

Input §5. DK-based Prefiltration §6. DL-based Similarity Calculation §7. DK-based Re-ranking Output
Target — . Target | = o — .
Function 1| Feature Extraction Function ,
'

TreeLSTM Encoding Crmfahie
N Homologous
Siamese Calculation | 1| Homologous e
' Functions
'
Similarity Calculation |

m====F---=-q

Remainder
Functions

Fig. 6. Workflow of AsTERIA-PRo. DK stands for domain knowledge. DL stands for deep learning.

4 METHODOLOGY OVERVIEW

ASTERIA-PRO consists of three primary modules: DK-based Prefiltration, DL-based Similarity
Calculation, and DK-based Re-ranking, as shown in Figure 6. Here, DK stands for Domain
Knowledge, and DL stands for Deep Learning. The DK-based prefiltration module utilizes
syntactic features to filter out dissimilar functions from the candidate functions in a lightweight
and efficient manner (see Section 5). The DL-based similarity calculation module encodes ASTs
into representation vectors using the Tree-LSTM model and determines the similarity score
between the target function and the remaining functions using a Siamese network (see Section 6).
The DK-based re-ranking module reorders the candidate homologous functions produced by the
DL-based similarity calculation module using lightweight structural features, such as the function
call relationship. By integrating these three modules, AsTERIA-PRrO efficiently and effectively
detects homologous functions across architectures.

5 DK-BASED PREFILTRATION

At this stage, ASTERIA-PRO aims to incorporate an efficient and effective filter. To achieve this
goal, we have summarized the challenges associated with fully exploiting the NCL feature. Based
on these challenges, we have developed a novel algorithm that overcomes these obstacles and
enables us to construct the filter.

5.1 Exploitation Challenges

We have manually examined the false-negative cases where homologous functions were filtered
out by both the NCL and No. of callee features. Through this examination, we have identified the
challenges associated with appropriately exploiting the NCL and No. of callee features to address
these false-negative cases.

o Exploitation Challenge 1 (EC1). Decorated callee function name. A decorated callee func-
tion name is the result of a function name being decorated by the compiler using various
techniques [8]. One such technique is name mangling, which is used by the C++ compiler
to encode the function name with additional information about its parameters and return
type to facilitate function overloading. The name of the function after decoration may differ
from its original name in the source code and will be distinct across different architectures,
particularly X86 and X64, due to their differing return types.

e Exploitation Challenge 2 (EC2). In certain functions, commonly referred to as leaf nodes
in a call graph, there are no callee functions present. These functions are self-contained and
do not call any other functions within their code. As a result, the leaf nodes do not possess
distinguishable NCL and No. of callee features.

e Exploitation Challenge 3 (EC3). Function calls in binary target functions might not al-
ways be consistent with source code. Function calls may be added or deleted due to compiler
optimization. The reasons for the function call change are function inline, intrinsic function
replacement, instruction replacement for optimization, that behave differently in different
architectures. These challenges are introduced in Section 2.3.
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To overcome exploitation challenges, we improve feature ECL and propose a novel algorithm
UpRelation.

5.2 Definition of NCL

This section provides a formal definition of NCL to enhance clarity and precision. NCL is built
upon the call graph of the software. The call graph CG can be defined by representing all func-
tions as nodes and the call relationships between them as edges: CG = (V,&), where V =
{vlv is a function} denotes the node collection and & = {(u, v)|u calls v} denotes the edge collec-
tion. For any edge (u,v) € &, we say that function v is a callee function of function u. To facilitate
linking, function names in the dynamic symbol table DST (i.e., import and export table) are pre-
served [36]. For instance, if a target function calls an external function such as “strcpy,” then the
callee function name “strcpy” remains in the import table, rather than being removed after binary
stripping. The NCL of a target function f is defined as NCLy = {v|v € V,v € DST (f,v) € &,},
where v is sorted by its call instruction address.

To address EC1, we employ two strategies to recover the original function names. First, for C++
decorated names, we use the recovery tool cxxfilt [5] to recover the function names. Second, for
other decorated functions, we define heuristic rules to recover the function names. For example,
we recover the function call to “_gets” by replacing it with “gets,” by removing the underscore at
the beginning. In cases where a function calls the same function multiple times, we keep multiple
identical function names.

5.3 Filtration Algorithm

To address the additional two challenges, we propose a callee similarity-based algorithm called Up-
Relation. This algorithm leverages context information in the call graph to overcome challenges
EC2 and EC3. Specifically, the algorithm utilizes parent nodes of leaf nodes in the call graph
to match similar leaf nodes and address challenge EC2. In the algorithm, we adopt a drill-down
strategy that combines three features: NCL, No. Callee, and String Constants, based on their infor-
mation content. The No. Callee of function f is denoted by Calleey, and the set of String Constants
for function f is denoted by StrConsy.

Given a vulnerable function f;,, Algorithm 1 aims to eliminate most non-homologous functions
while retaining the vulnerable candidate functions in a list (VFL) from the target function list
(TFL). The code from lines 2 to 6 performs filtering when the feature NCL¢,, of f, is not empty.
Specifically, the algorithm calculates the callee similarity ratio (CSR) between NCL¢,, and NCLy
of all candidate functions in line 4. It then filters out functions whose CSR is less than a threshold
Tncr. Similarly, when the number of callee functions (Calleer,) of f, is not zero, the algorithm
filters out functions by calculating the Relevance Distance Ratio (RDR) score from line 7 to 11. The
most crucial portion of the algorithm is in lines 12 to 19, where it matches the leaf functions to
address EC2. All caller functions of f,, are first visited, and the algorithm employs UpRelation
to discover all functions that are similar to the caller function caller in line 14. For each similar
function caller’, the algorithm considers all its callee functions as vulnerable candidate functions
at line 16. Matching the same leaf functions by locating the same caller functions introduces some
extraneous (leaf) functions that share the same caller function but are not the same as the leaf
function. To remove these extraneous functions, the algorithm utilizes string similarity at line
22. After filtering by callees and strings, the algorithm finally obtains the expected vulnerable
candidate function list VFL.

Leaf Node Calculation Illustration. When the Strings, No. Callee, and NCL are non-empty,
the similarity calculation in our algorithm is straightforward. The arduous aspect of the algorithm
lies in managing leaf functions that do not call other functions. To provide a clearer illustration,

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 1. Publication date: November 2023.



1:12 S. Yang et al.

1
! NCL:  [Ex.Func.,Im.Func] €= [Ex. Func.Im.Func] :NCL
> . Matched .
No. Callee: 3 > 3 :No. Callee

Fig. 7. The leaf function F{ is matched by its homologous function Fs (rather than being filtered out). Ex.
Func. is short for “Exported Function” Im. Func. is short for “Imported Function.”

ALGORITHM 1: UpRelation

Input: Vulnerable Function fv, Target Function List TFL, Thresholds Txcr, Teaiiees Tstring
Output: Vulnerable Candidate Function List VFL

VFL « TFL;

2 if NCLy,, is not null then

3 for f € TFL do

s = CSR(NCLf.U, NCLf);

if s < Tycr then VFL.pop(f);

-

6 end

7 else if Callees,, > 0 then

8 for f € TFL do

s= RDR(Calleefv, Calleef);

if s < T, 41100 then VFL.pop(f);

10

11 end

12 else

13 FL’ = 0;

14 for caller € GetCallers(fv) do

15 for caller’ € UpRelation(caller, VFL) do
16 | FL’.add(GetCallees(caller’));

17 end

18 end

19 VFL = FL’;

20 if StrConsg, is not null then

21 for f € VFL do

22 s = CSR(StrConva, StrConSf);
23 if s < Ts¢ring then VFL.pop(f);
24 end

25 else
26 ‘ return
27 end
28 VFL;

we have employed an example depicted in Figure 7 to demonstrate why homologous functions of
leaf function F; are preserved after pre-filtration. In this example, we presume that leaf function
F; does not comprise any strings. The algorithm proceeds to lookup its caller and collate its NCL
as [Ex., Func.,Im., Func.], where Ex. Func. is an abbreviation for “Exported Function,” and Im.
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Fig. 8. Siamese architecture and Tree-LSTM encoding.

Func. is an abbreviation for “Imported Function.” Similarly, the algorithm collects the NCL of caller
of F{ and attempts to correlate between the two NCLs. We postulate that homologous functions
from the same software have equivalent callers, signifying that caller functions caller and caller’
invoke the same exported and imported functions. Consequently, the NCL of two caller functions
comprise the same elements [Ex., Func., Im., Func.]. Upon the successful correlation of the NCL
of caller function Callerg, the algorithm preserves all its offspring nodes, encompassing F;, Im.
Func., and Ex. Func., and eliminates all other functions. As a result, homologous function F{ of
Fs is conserved after pre-filteration.

6 DL-BASED SIMILARITY CALCULATION

This module calculates the similarity between two function ASTs by encoding them into vectors
and applying the Siamese architecture to calculate similarity between encoded vectors. Figure 8
depicts the calculation flow.

6.1 Tree-LSTM Encoding

Given an AST, Tree-LSTM model encodes it into a representation vector. Tree-LSTM model is
firstly proposed to encode the tree representation of a sentence and summarize the semantic
information in natural language processing. Tree-LSTM model can preserve every property of
the plain LSTM gating mechanisms while processing tree-structured inputs. The main difference
between the plain LSTM and the Tree-LSTM is the way to deal with the outputs of predecessors.
The plain LSTM utilizes the output of only one predecessor in the sequence input. We utilize
Tree-LSTM to integrate the outputs of all child nodes in the AST for calculation of the current
node. To facilitate the depiction of the Tree-LSTM encoding, we assume that node v has two
child nodes v; and v,. The Tree-LSTM encoding of node v takes three types of inputs: Node
embedding ey of v, hidden states hy; and hy,, and cell states cg; and cg, as illustrated in Figure 8.
The node embedding ey is generated by using the pre-trained model CodeT5 to embed the node vy
to a high-dimensional representation vector. hyj, hi,, cx;, and ck, are outputs from the encoding
of child nodes. During the node encoding in Tree-LSTM, there are three gates and three states
that are important in the calculation. The three gates are calculated for filtering information to
avoid gradient explosion and gradient vanishing [58]. They are input, output, and forget gates.
There are two forget gates f; and f,, filtering the cell states from the left child node and right
child node separately. As shown in Node Encoding in Figure 8, the forget gates are calculated
by combining hg;, hi,, and eg. Similar to the forget gates, the input gate, and the output gate
are also calculated by combining hyj, hi,, and ex. The details of the three types of gates are
as follows:

fri=0o (erk + (Ulj;hkl + Ul];hkr) + bf) , (6)

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 1. Publication date: November 2023.



1:14 S. Yang et al.

fir =0 (W e + (U + Ul ) +07) @)
ir=0 (Wiek + (Ulihkl + Urihkr) + bi) , (8)
op =0 (Woek + (Ulohkl + Urohkr) + bo) R 9)

where i; and oy denote the input gate and the output gate, respectively, and the symbol o denotes
the sigmoid activation function. The weight matrix W, U, and bias b are different corresponding
to different gates. After the gates are calculated, there are three states uy, c, and hy in Tree-LSTM
to store the intermediate encodings calculated based on inputs hy;, hi,, and ex. The cached state
uj combines the information from the node embedding e; and the hidden states hy; and hyg,
(Equation (10)). And note that uj utilizes tanh as the activation function rather than sigmoid for
holding more information from the inputs. The cell state ¢, combines the information from the
cached state uy and the cell states cg; and ci, filtered by forget gates (Equation (11)). The hidden
state hy is calculated by combining the information from cell state c; and the output gate oj
(Equation (12)). The three states are computed as follows:

ur = tanh (Wuek + (Uluhkl + Uruhkr) + bu) R (10)
Ck = ik®uk+(ck1®fkl+ckr kar): (11)
hy = o © tanh(cy), (12)

where the © means Hadamard product [40]. After the hidden state and input state are calculated,
the encoding of the current node vy is finished. The states ¢, and hy will then be used for the
encoding of vy’s parent node. During the AST encoding, Tree-LSTM encodes every node in the
AST from bottom up as shown in Tree-LSTM Encoding in Figure 8. After encoding all nodes in
the AST, the hidden state of the root node is used as the encoding of the AST.

6.2 Siamese Calculation

This step uses Siamese architecture, which integrates two identical Tree-LSTM models to calculate
similarity between encoded vectors. The details of the Siamese architecture M (T}, T,) are shown
in Figure 8. The Siamese architecture consists of two identical Tree-LSTM networks that share
the same parameters. In the process of similarity calculation, the Siamese architecture first utilizes
Tree-LSTM to encode ASTs into vectors. We design the Siamese architecture with subtraction
and multiplication operations to capture the relationship between the two encoding vectors. After
the operations, the two resulting vectors are concatenated into a larger vector. Then the result-
ing vector goes throughA#a layer of softmax function to generate a two-dimensional vector. The
calculation is defined as

M(T1, T,) = softmax (o (cat(IN(T1) — N (T2)[, N(T1) © N(T2)) X W))), (13)

where W is a 2n X 2 matrix, the © represents Hadamard product [40], | - | denotes the oper-
ation of making an absolute value, the function cat(-) denotes the operation of concatenating
vectors. The softmax function normalizes the vector into a probability distribution. Since W is a
2n X 2 weight matrix, the output of Siamese architecture is a 2 X 1 vector. The format of output is
[dissimilarity score, similarity score], where the first value represents the dissimilarity score and
the second represents the similarity score. During the model training, the input format of Siamese
architecture is < Ty, Ty, label >. In our work, the label vector [1,0] means T; and T, are from non-
homologous function pairs and the vector [0, 1] means homologous. The resulting vector and the
label vector are used for model loss and gradient calculation. During model inference, the second
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Fig. 9. The re-ranking motivation example. In the rectangular box with dashed line are the top K candidate
homologous functions of F; produced by the search (i.e., DL-based similarity detection). Solid line arrows
indicate the function call relationship (e.g., F; calls Cﬁl). The dotted line arrows indicate the callee function
match in re-ranking.

value in the output vector is taken as the similarity of the two ASTs, and the similarity of ASTs is
used in re-ranking.

7 DK-BASED RE-RANKING

This module seeks to confirm the homology of the top k candidate functions output by the Tree-
LSTM network by re-ranking them. In the prior phase, the Tree-LSTM network infers the seman-
tic information from the AST, which is an intra-functional feature. The knowledge gained from
the AST is insufficient to establish the homology of functions. In this phase, function call rela-
tionships are used as domain knowledge to compensate for the lack of knowledge regarding the
inter-functional features of the Tree-LSTM. To this end, we design an algorithm called Relational
Structure Match. In contrast to the callee application in the pre-filtering module, this module uses
more extensive information from callee relationships to show the degree of homology of candidate
functions.

7.1 Motivated Example

Our algorithm is based on a conforming observation to an intuitive law: If a function F; calls func-
tion C™1, then its homologous function F] will also call the homologous function Ci of C1. As depicted
in Figure 9, we have F; calls CF, and Ff calls CF. Assume that the search process for F; yields the
top K functions containing the target homologous function F|. We then employ the call relations of
F; and F] to conduct precise callee function matching for re-ranking. In particular, callee functions
of F; are divided into two categories, named callees C' and anonymous callees C%'. For named
callees, their names are utilized to match callees of functions between the source function F; and
the candidate top K functions. For anonymous callees, we employ DL-based similarity detection
to calculate the similarity between callees of functions between the source function F; and the
candidate top K functions. Recalling the observation, the homologous function F; of F; holds the
most matched callees. After re-ranking the candidate functions based on the matched callees, F|
is re-ranked in the first place.

7.2 Relational Structure Match Algorithm

The algorithm aims to rescore each candidate function by leveraging the call relationship between
the target function and the candidate functions. The relational structure refers to the call relations
between the target function and all its callee functions, as illustrated in Section 7.1. To match the
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relational structure, the algorithm performs one of two distinct operations (O; and O;) based on
whether the source function has callee functions or not.

O;: When the source function F; has one or more callee functions, the algorithm extracts all
callee functions of F; to build a mixed callee function set (MCFS). (details are described
below). Using MCFS, the algorithm calculates similarities between the target function and
the candidate functions, resulting in new match scores. It re-ranks all candidate functions by
combining the original Asteria scores (Equation (5)) with the newly calculated match scores.
The details of MCFS and match score calculation are described in the subsequent sections.

O,: When the source function F; has no callee functions, the algorithm removes all candidate
functions that have one or more callee functions. The remaining candidate functions are
then re-ranked based on their original Asteria scores.

7.2.1 Mixed Callee Function Set. The MCFS of function F consists of two types of callee func-
tions: Named callee functions and anonymous callee functions. Named callee functions refer to
functions whose names have been preserved. These functions are typically imported or exported
functions, and their function names are necessary for external linking purposes. However, anony-
mous callee functions are a type of function for which the function name has been removed for
security reasons. These functions are typically anonymized to protect sensitive information. We
denote the MCFS of function F as CSg = C,fl, e, C,fj, Cgl, e, C[fj, where Cﬁj represents a named
callee function and C ; represents an anonymous callee function. The set CSr includes both types
of callee functions for function F.

7.2.2  Match Score Calculation. The algorithm performs two types of matches to calculate the
match score M for each candidate function, utilizing the MCFSs of the target function F; and all
candidate functions.

Named Callee Match: For all named callees Ci} in CSf,, the algorithm matches them with the

named callees of each candidate function based on function names. If a named callee C2' in F; has
. F . . . .
the same function name as a named callee C;,' in a candidate function F], then they are considered

a match. The number of matched functions in candidate function F; is denoted as NnF L
Anonymous Callee Match: For all anonymous callees CZ in CSF,, the algorithm utilizes DL-

based similarity detection to calculate similarity scores between all anonymous callees of the target

function and the anonymous callees of all candidate functions. For each anonymous callee CS}Z in

a candidate function F;, the algorithm calculates the maximum similarity score between CfJ’ and

all anonymous callees of the target function. This maximum similarity score is denoted as S(I:j’
After matching all callee functions of the candidate functions, the match score MF, of candidate
function F; is calculated as follows:
— NFi Fi
Mr, = Nt + > St (14)
where S‘f]’l represents the similarity score between an anonymous callee Cg’l in candidate function

F; and the anonymous callees of the target function F;. The sum is taken over all anonymous
callees in CSF,, the MCFS of candidate function F;.

7.2.3  Match Score-based Re-ranking. The re-ranking score of candidate function F; is obtained
by combining the match score M, and its DL-based similarity score MF; using Equation (15). The
algorithm calculates a new score S” e=rank p. for each candidate function F; as follows:

Sperank = g x Mg, + B X Mp,. (15)
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Here, o and f are weight coefficients that satisfy &+ 8 = 1. The new score S"¢~74"KF; combines the
DL-based similarity score MF; and the match score Mp,, emphasizing their importance according
to the weights. A higher re-ranking score indicates a higher degree of homology.

After calculating the re-ranking scores for all candidate functions, the algorithm sorts them in
descending order based on their new scores S;™" ank This ranking allows for the identification of
candidate functions with higher homology, as those with higher scores are prioritized.

8 EVALUATION

We aim to conduct a comprehensive practicality evaluation of various state-of-the-art function
similarity detection methods for bug search. To this end, we adopt eight different metrics to de-
pict the search capability of different methods in a more comprehensive way. Furthermore, we
construct a large evaluation dataset, in a way that is closer to practical usage of bug search.

8.1 Research Questions
In the evaluation experiments, we aim to answer following research questions:

RQ1. How does ASTERIA-PRO compare to baseline methods in cross-architecture and cross-
compiler function similarity detection?

RQ2. What is the performance of ASTERIA-PRO, compared to baseline methods for bug search
purpose?

RQ3. How much do DK-based filtration and DK-based re-ranking improves in accuracy and
efficiency for AsTErRIA-PRO? How do their performance compare to other baseline meth-
ods when integrated together?

RQ4. How do different configurable parameters affect the accuracy and efficiency?

RQ5. How does ASTERIA-PRO perform in a real-world bug search?

8.2 Implementation Details

We utilize IDA Pro 7.5[10] and its plugin Hexray Decompiler to decompile binary code and extract
ASTs. The current version of the Hexray Decompiler supports x86, x64, PowerPC (PPC), and ARM
architectures. For the encoding of leaf nodes in Equations (6)-(11), We assign zero vectors to the
state vectors hj, hyr, ck1, and ck,. During model training, we use the binary cross-entropy loss
function (BCELoss) to measure the discrepancy between the labels and the predictions. The Ada-
Grad optimizer is utilized for gradient computation and weight-matrix updating after the losses
are computed. Due to the dependency of Tree-LSTM computation steps on the AST shape, par-
allel batch computation is not possible. Therefore, the batch size is always set to 1. The model is
trained for 60 epochs. Our experiments are conducted on a local server with two Intel Xeon CPUs
E5-2620 v4 @ 2.10 GHz, each with 16 cores, 128 GB of RAM, and 4 TB of storage. The ASTERIA-PRO
code runs in a Python 3.6 environment. We compile the source code in our dataset using the gcc
v5.4.0 compiler and utilize buildroot-2018.11.1 [3] for dataset construction. We use the bin-
walk tool [2] to unpack firmware and obtain the binaries for further analysis. In the UpRelation
algorithm of the filtering module, we set the threshold values Tncr, Teatiees Tstring to 0.1, 0.8, and
0.8, respectively, based on their Fs¢ore. The crucial threshold Ty is discussed in Section 8.8.1. In
Equation (15), we set « = 0.1 and = 0.9 to emphasize the role of callee function similarities in
the re-ranking process. The sensitivity analysis of these weights is presented in Section 8.8.2.

8.3 Comprehensive Benchmark

To compare BCSD methods in a comprehensive way, we build an extensive benchmark based on
multiple advanced works [50, 61, 65]. The benchmark comprises of two datasets, two detection
tasks, and five measure metrics.
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8.3.1 Dataset. The functions not involved in the prefiltering test (see Section 3) are divided into
two datasets for model training and testing and evaluation. The evaluation dataset consists of two
sub-datasets, each of which is used for a different detection task.

Model Dataset Construction. The model dataset is constructed for training and testing
the Tree-LSTM model. It consists of a total of 31,940 functions extracted from 1,944 distinct
binaries. From these functions, 314,852 pairs of homologous functions and 314,852 pairs of
non-homologous functions are created. To ensure a fair evaluation of the model’s performance,
the dataset is divided into a training set and a testing set using an 8:2 ratio. This means that
80% of the function pairs are used for training the model, while the remaining 20% are used for
testing and evaluating the model’s performance. The dataset construction allows the Tree-LSTM
model to learn and generalize from a diverse set of functions, including both homologous and
non-homologous pairs. By dividing the dataset into training and testing sets, the model’s perfor-
mance can be assessed on unseen data to measure its effectiveness in identifying homologous
functions.

Evaluation Dataset Construction. The dataset construction process involves creating two
sub-datasets: the g-dataset and the v-dataset. These datasets are used for different evaluation tasks:
Classification test and bug search test. The g-dataset is constructed for the classification test,
which evaluates the model’s ability to classify homologous and non-homologous function pairs. It
consists of tuples in the form (F, (Fy, F,,)), where F is the source function and (Fj, F;,) represents a
function set containing a homologous function Fj, and a non-homologous function F,,. Each tuple
in the g-dataset represents a pair of functions to be classified as homologous or non-homologous.
However, the v-dataset is constructed for the bug search test, which evaluates the model’s ability
to identify non-homologous functions among a larger set of candidates. The tuples in the v-dataset
are of the form (F, (Fp, Fu1, - - ., Fuis - - - » Fnio000))- Here, Fj, represents a homologous function, and
Fp1 to Fpi0000 represent non-homologous functions. In this case, the Ps.; contains a larger number
of non-homologous functions to simulate the bug search scenario. For both datasets, the source
function F is matched with all the functions in the Pg.; for evaluation. The g-dataset focuses on
evaluating the model’s accuracy in classifying homologous and non-homologous pairs, while the
v-dataset assesses the model’s performance in identifying non-homologous functions among a
larger pool of candidates.

8.3.2 Metrics. We choose five distinct metrics for comprehensive evaluation from earlier
works [53, 61, 70]. In our evaluation, the similarity of a function pair is calculated as a score of
r. Assuming the threshold is f, if the similarity score r of a function pair is greater than or equal
to B, then the function pair is regarded as a positive result; otherwise, it is regarded as a negative
result. For a homologous pair, if its similarity score r is greater than or equal to f, then it is a true
positive (TP). If a similarity score of r is less than f, then the calculation result is a false negative
(FN). For a non-homologous pair, if a similarity score r is greater than or equal to f, then it is
a false positive (FP). When the similarity score r is less than f, it is a true negative (TN). These
metrics are described as follows:

e TPR. TPR is short for true-positive rate. TPR shows the accuracy of homologous function
detection at threshold S. It is calculated as TPR = %.

e FPR. FPR is short for false-positive rate. FPR shows the accuracy of non-homologous func-
tion detection at threshold S. It is calculated as FPR = %.

e AUC. AUC is short for area under the curve, where the curve is termed Receiver Operating
Characteristic (ROC) curve. The ROC curve illustrates the detection capacity of both homol-
ogous and non-homologous functions as its discrimination threshold f is varied. AUC is a

quantitative representation of ROC.
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e MRR. MRR is short for mean reciprocal rank, which is a statistic measure for evaluating
the results of a sample of queries, ordered by probability of correctness. It is commonly
used in retrieval experiments. In our bug retrieval-manner evaluation, it is calculated as
MRR = @ D Fpi€Pser W, where Rankp,, denotes the rank of function Fp,; in pairing

candidate set Pg,;, and |Ps,.;| denotes the size of Ps,;.

e Recall@Top-k. It shows the capacity of homologous function retrieve at top k detection
results. The top k results are regarded as homologous functions (positive). It is calculated as
follows:

g(x) =

1 ifx =True
0 ifx = False’

1
Recall@k = m Zg(Rankfigt < k).

To demonstrate the reliability of the ranking results, we adopt Recall@Top-1 and
Recall@Top-10.

8.3.3 Detection Tasks. The two function similarity detection tasks based on BCSD applications
are as follows:

Task-C (Classification Task): This task focuses on evaluating the ability of methods to classify
function pairs as either homologous or non-homologous. It involves performing binary classifi-
cation on the g-dataset, which contains tuples of the form (F, (F, F,,)), where Fj, represents a
homologous function and F, represents a non-homologous function. The task evaluates the per-
formance using three metrics: TPR, FPR, and AUC of the ROC curve. TPR and FPR are commonly
used to measure the performance of binary classification models, while AUC provides an overall
measure of the model’s discriminative ability.

Task-V (Bug/Vulnerability Search Task): This task focuses on evaluating the ability of methods
to identify homologous functions from a large pool of candidate functions. It uses the v-dataset,
which contains tuples of the form (F, (Fy, Fu1, - - . Fnis - - - » Fn10000)), Where Fj, represents a homol-
ogous function and F,; represents non-homologous functions. The task involves calculating func-
tion similarity between a source function F and all functions in the Ps.;. The functions in Pg.; can
then be sorted based on similarity scores. The task evaluates the performance using three metrics:
MRR, Recall@Top-1, and Recall@Top-10. MRR measures the rank of the first correctly identified
homologous function, while Recall@Top-1 and Recall@Top-10 measure the proportion of cases
where the correct homologous function is included in the top-1 and top-10 rankings, respectively.

These tasks provide a comprehensive evaluation of the methods’ performance in distinguishing
between homologous and non-homologous functions and identifying homologous functions from
a large pool of candidates.

8.4 Baseline Methods

We choose various representative cross-architectural BCSD works, that make use of AST or are
built around deep learning encoding. These BCSD works consist of Diaphora [7], Gemini [65],
SAFE [51], and Trex [53]. Moreover, we also use our previous conference work Asteria as one of
baseline methods. We go over these works in more details below.

Diaphora. Diaphora performs similarity detection also based on AST. Diaphora maps nodes
in an AST to primes and calculates the product of all prime numbers. Then it utilizes a difference
function to calculate the similarity between the prime products. We download the Diaphora source
code from github [7], and extract Diaphora’s core algorithm for AST similarity calculation for
comparison. Noting that it would take a significant amount of time (several minutes) to compute a
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pair of functions with extremely dissimilar ASTs, we add a filtering computation before the prime
difference. The filtering calculates the AST size difference and eliminates function pairs with a
significant size difference. We publish the improved Diaphora source code on our website [1].

Gemini. Gemini encodes attributed CFGs (ACFGs) into vectors with a graph embedding
neural network. The ACFG is a graph structure where each node is a vector corresponding to
a basic block. We have obtained Gemini’s source code and its training dataset. Notice that in
Reference [65] the authors mentioned it can be retrained for a specific task, such as the bug search.
To obtain the best accuracy of Gemini, we first use the given training dataset to train the model to
achieve the best performance. Then, we re-train the model with the part of our training dataset.
Gemini supports similarity detection on X86, MIPS, and ARM architectures.

SAFE. SAFE works directly on disassembled binary functions, does not require manual feature
extraction, is computationally more efficient than Gemini. In their vulnerability search task, SAFE
outperforms Gemini in terms of recall. SAFE supports three different instruction set architecture
X64, X86, and ARM. We retrain SAFE based on the official code [51] and use retrained model
parameter for our test. In particular, we select all appropriate function pairs from the training
dataset, whose instruction set architectures are supported by SAFE. Then, we extract the function
features for all function pairs selected and discard the function pairs whose features SAFE cannot
extract. After feature extraction, 27,580 function pairs of three distinct architecture combinations
(i.e., X86-X64, X86-ARM, and X64-ARM) are obtained for training. Next, We adopt the default
model parameters (e.g., embedding size) and training setting (e.g., training epoches) to train SAFE.

Trex. Trex is based on pretrained model [53] of the state-of-the-art NLP technique, and micro-
traces. It utilizes a dynamic component to extract micro-traces and use them to pretrain a masked
language model. Then it integrates pretrained ML model into a similarity detection model along
with the learned semantic knowledge from micro-traces. It supports similarity detection of ARM,
MIPS, X86, and X64.

8.5 Comparison of Similarity Detection Accuracy (RQ1)

In the evaluation of cross-architecture scenarios, the focus was on assessing the detection capabil-
ity of different approaches in two tasks separately, which is commonly encountered in vulnerability
search scenarios. Additionally, the evaluation also considered the performance in cross-compiler
scenarios involving three different combinations of compilers: gce-clang, gee-ice, and clang-icc.

8.5.1 Cross-architecture Evaluation. In the evaluation of the two distinct tasks, it is important
to note that the baseline methods may not be capable of detecting function similarities for all four
instruction set architectures. As a result, the detection results for certain architecture combinations
may be empty, indicating that the baseline methods were unable to provide any meaningful results.
For each task, the evaluation measured the performance of various approaches in terms of the
defined metrics. The specific outcomes and results of the evaluation for each task were analyzed
and discussed.

Comparison on task-C. In Task-C, all approaches were evaluated by conducting similarity de-
tection on all supported architectural combinations. The evaluation results were used to calculate
the three metrics (TPR, FPR, and AUC) for each approach. These results are presented in Table 2
and visualized in Figure 10, where each subplot represents the ROC curve for a specific architecture
combination. The x-axis represents the FPR (False-positive Rate), and the y-axis represents the TPR
(True-positive Rate). By examining the ROC curves in Figure 10, it can be observed that methods
with performance curves closer to the upper-left corner generally exhibit superior performance.
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Fig. 10. ROC curves on all cross-architecture combination detection.
Table 2. AUCs in Task-C
Methods X86-ARM X86-X64 X86-PPC ARM-X64 ARM-PPC X64-PPC Average
ASTERIA-PRO | 0.996 0.998 0.995 0.998 0.998 0.999 0.997
Asteria 0.995 0.998 0.998 0.995 0.998 0.999 0.997
Gemini 0.969 0.984 0.984 0.973 0.968 0.984 0.977
SAFE 0.851 0.867 — 0.872 — — 0.863
Trex 0.794 0.891 — 0.861 — — 0.849
Diaphora 0.389 0.461 0.397 0.388 0.455 0.400 0.415

In particular, the ROC curves of ASTERIA-PRO and Asteria are almost indistinguishable across
all architectural combinations, indicating that they possess equivalent classification performance
in Task-C. Furthermore, the AUC values presented in Table 2 provide a quantitative measure of
the approaches’ ability to distinguish between homologous and non-homologous functions. It is
noted that Asteria-Pro and Asteria demonstrate nearly identical performance in this regard. How-
ever, the AUC values of AsTERIA-PRO are consistently greater than those of the other baseline
techniques for all architectural combinations. This suggests that ASTERIA-PRO exhibits superior
discriminative capability between homologous and non-homologous functions in Task-C. These
findings highlight the strong performance of AsTERIA-PRO in the classification task and its ability
to outperform the baseline methods in distinguishing between homologous and non-homologous
functions across various architecture combinations.

Comparison on task-V. Table 3 presents the results of calculating MRR, Recall@Top-1, and
Recall@Top-10 for different architectural combinations. These metrics evaluate the performance
of the methods in the bug (vulnerability) search task. Recall@Top-1 measures the ability to accu-
rately detect homologous functions, while Recall@Top-10 assesses the capability to rank homolo-
gous functions within the top ten positions. In the table, the first column represents the metrics,
and the second column lists the names of the methods. The third through eighth columns display
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Table 3. MRR and Recall of Different Methods

Metrics Methods X86-X64 X86-ARM X86-PPC X64-ARM X64-PPC_ARM-PPC Avg
AsTErRIA-PRO 0.934  0.887 0.931 0.879 0.919 0.903 0.908
Asteria 0.776 0.724 0.731 0.708 0.713 0.750 0.734
MRR Trex 0.414 0.206 - 0.309 - - 0.310
Gemini 0.478 0.250 0.325 0.336 0.357 0.256 0.334
Safe 0.029 0.007 - 0.009 - - 0.015
Diaphora 0.023 0.019 0.020 0.019 0.020 0.021 0.020
AsTERIA-PRO 0.917 _ 0.868 0912 0.879 0.899 0.903 0.896
Asteria 0.706 0.648 0.652 0.627 0.631 0.675 0.657
Trex 0.274 0.110 - 0.192 - - 0.192
Recall@Top-1 | 50 is 0.405 0.180 0.242 0.261 0.279 0.229 0.266
Safe 0.004 0.002 - 0.002 - - 0.003
Diaphora 0.021 0.016 0.017 0.016 0.017 0.018 0.018
ASTERIA-PRO 0.961  0.921 0.962 0.913 0.952 0.932 0.940
Asteria 0.902 0.867 0.882 0.857 0.866 0.890 0.877
Trex 0.710 0.452 - 0.575 - - 0.579
Recall@Top-10 | 3 i 0.615 0.383 0.482 0.478 0.502 0.468 0.488
Safe 0.022 0.010 - 0.014 - - 0.015
Diaphora 0.029 0.024 0.026 0.026 0.025 0.027 0.026

the metric values for the different architectural combinations, while the last column shows the
mean value across all architectures. It can be observed that ASTERIA-PRO and Asteria consistently
outperform the baseline approaches by a significant margin across all architecture configurations.
ASTERIA-PRO achieves an impressive average MRR of 0.908, indicating a substantial improvement
of up to 23.71% compared to Asteria. Even after retraining, Safe demonstrates poor performance
in properly recognizing small functions. In terms of Recall@Top-1, both ASTERIA-PRO and Aste-
ria achieve relatively high average precisions of 0.89 and 0.65, respectively, which are 237% and
146% higher than the best result (0.26). Notably, ASTERIA-PRO shows a 36.4% improvement in
Recall@Top-1 compared to Asteria. Regarding Recall@Top-10, both AsTERIA-PRO and Asteria con-
tinue to exhibit superior performance compared to the other methods. While other methods show
a significant increase in recall compared to Recall@Top-1, their values remain below ASTERIA-PRO.
Overall, these results demonstrate that ASTERIA-PRO outperforms the baseline methods, including
Asteria, in terms of MRR, Recall@Top-1, and Recall@Top-10 across different architecture combi-
nations. The recall of other methods, such as Trex, increases significantly from Recall@Top-1 to
Recall@Top-10, indicating their ability to rank homologous sequences more accurately. However,
they still fall short compared to ASTERIA-PRO.

Indeed, the performance of BCSD approaches can vary significantly between different evalua-
tion tasks, as demonstrated by the differences in Task-V performance compared to the similar ROC
curve performance in Task-C. In the case of Gemini, despite having a high AUC score similar to
Asteria, its MRR performance is relatively poor compared to both Asteria and AsTERIA-PRO. This
indicates that evaluating BCSD approaches in a single experiment setting, such as Task-C, may
not provide a comprehensive understanding of their real-world applicability and behavior. Task-
V, which focuses on bug (vulnerability) search, simulates the scenario of identifying homologous
functions from a pool of candidate functions. In this task, the ability to accurately rank and identify
homologous functions becomes crucial. While ROC curves and AUC scores provide information
about the ability to discriminate between homologous and non-homologous functions, they may
not reflect the performance in ranking and retrieving homologous functions accurately. Therefore,
it is important to consider multiple evaluation tasks, such as Task-C and Task-V, to assess the over-
all performance and effectiveness of BCSD approaches. The results obtained from different tasks
can provide a more comprehensive understanding of the strengths and limitations of each method
and their suitability for real-world applications.
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1 CK_RV proxy_C_bDigestInit(...){ 1 CK_RV proxy_C_DigestKey(...){
2 2
3 3
4 4
5 v5 = (Proxy *)self[1]. 5 v5 = (Proxy x)self[1].
C_GetSlotInfo; C_GetSlotInfo;

6 v7 = handle; 6 v7 = handle;

7 result = 7 result =
map_session_to_real (v5 map_session_to_real (v5
,&v7 ,&map,V3); ,&v7 ,&map,V3);

8 if (!result) 8 if (!result)

9 result = map.funcs->C_ 9 result = map.funcs->C_
DigestInit(v7, DigestKey(v7,
mechanism); mechanism);

10 return result; 10 return result;

1} 1}

Fig. 11. Two proxy functions with only distinctions highlighted in red.

False-positive Analysis. The false-positive outcomes of ASTERIA-PRO can be attributed to two
primary causes:

Cause 1: Similar Syntactic Structures of Proxy Functions—Proxy functions exhibit similar syntac-
tic structures, which can lead to similar semantics. This can make it challenging for Asteria-Pro to
differentiate between proxy functions, since their semantics are alike. Figure 11 provides an illus-
tration of two proxy functions that differ only on line 9. Due to their similar semantics, it becomes
difficult to confirm the actual callees, especially when symbols are lacking or when indirect jump
tables are involved.

Cause 2: Compiler-Specific Intrinsic Functions—Compilers for different architectures utilize
various intrinsic functions, which substitute libc function calls with optimized assembly instruc-
tions. For example, the gcc-X86 compiler may replace the memcpy function with several memory
operation instructions that are specific to the architecture. As a result, the memcpy function may
be absent from the list of callee functions used by Asteria’s filtering and re-ranking modules.
This lack of complete callee function information can lead to a loss of precision in the scoring
calculation.

Both causes contribute to the false-positive outcomes in AsTERIA-PRO, highlighting the chal-
lenges in accurately detecting function similarity across different architectures and handling vari-
ations in compilers’ optimization techniques. Addressing these causes and improving the precision
of function similarity detection in such scenarios is an ongoing area of research and development
in the field of BCSD.

8.5.2  Cross-compiler Evaluation. In the cross-compiler evaluation, we conducted experiments
using three different compilers: gee, icc (Version 2021.1 Build 20201112_000000), and clang (10.0.0),
all for the x86 architecture. The evaluation results are presented in Table 4. We evaluated the per-
formance of different methods using metrics such as MRR and Recall in the three cross-compiler
settings: gce-clang, gec-ice, and clang-icc. The average values for all three settings are also
provided in the last column of the table. Our new tool, ASTERIA-PRO, consistently outperforms
the baseline methods by significant margins across all three compiler combinations. Compared to
Asteria, ASTERIA-PRO achieves an average improvement of 47.6% in MRR and Recall, demonstrat-
ing its superior performance. The improvements compared to other baseline tools such as Trex,
Gemini, Safe, and Diaphora are even more substantial, with average improvements of 596.6%,
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Table 4. Cross-Compiler Evaluation Results

Metrics Methods gee-clang  gec-icc  clang-icc  Avg.
Asteria-Pro  0.755 0560  0.564 0.626
Asteria 0.624 0319 0328 0.424
MRR Trex 0.148 0.063  0.093 0.101
Gemini 0.234 0.121  0.080 0.145
Safe 0.058 0.187  0.076 0.107
Diaphora  0.727 0370  0.384 0.494
Asteria-Pro  0.694 0.479  0.486 0.553
Asteria 0.541 0.244  0.256 0.347
Trex 0.099 0.031  0.040 0.057
Recall@Top-1 | o ini 0.164 0.079  0.048 0.097
Safe 0.027 0.152  0.031 0.070
Diaphora  0.662 0312 0330 0.435
Asteria-Pro  0.864 0.706  0.711 0.760
Asteria 0.783 0.466  0.469 0.573
Trex 0.257 0.124  0.075 0.152
Recall@Top-10 | o o 0.368 0.196  0.137 0.234
Safe 0.101 0.239  0.149 0.163
Diaphora  0.844 0476  0.497 0.606

331.7%, 485.0%, and 26.7%, respectively. It is worth noting that Diaphora achieves surprisingly
high precision in the gcc-clang setting, particularly compared to the cross-architecture setting.
This may be attributed to the fact that compilers gcc and clang employ similar compilation
optimization algorithms, resulting in similar assembly code and abstract syntax tree (AST)
structures. However, since Asteria is not trained on a cross-compiler dataset, it exhibits relatively
lower precision compared to Diaphora. Although the precision performances of the methods vary
in different compiler combination settings, a consistent trend can be observed. Specifically, higher
precision is observed in the gcc-clang setting, while lower precision is observed in the gcc-icc and
clang-icc settings, except for Safe. This can be attributed to the fact that the icc compiler employs
more aggressive code optimizations, resulting in dissimilar assembly code compared to the other
compilers. Overall, the results of the cross-compiler evaluation demonstrate the effectiveness of
ASTERIA-PRO in detecting function similarity across different compilers and highlight its superior
performance compared to the baseline methods.

Answer to RQ1: ASTERIA-PRO Demonstrates superior accuracy in both Task-C and
Task-V. In Task-C, dominant model in ASTERIA-PRO demonstrates the best classification
performance by producing the highest AUC (0.997). Regarding Task-V, ASTERIA-
Pro outperforms other baseline methods by a large margin in MRR, Recall@Top-1,
and Recall@Top-10. In particular, AsTERIA-PRO has 172%, 236%, 147% higher MRR,
Recall@Top-1, Recall@Top-10 than the best baseline methods. Compared with Asteria,
ASTERIA-PRO manages to improve it for Task-V with 23.71% higher MRR, 36.4% higher
Recall@Top-1, and 7.2% higher Recall@Top-10. In a cross-compiler setting, ASTERIA-PRO
continues to outperform baseline methods by a significant margin. All BCSD methods
exhibit higher accuracy in the gcc-clang pairing compared to the gcc-icc or clang-icc
pairings, likely because the icc compiler tends to emit highly optimized assembly code.
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Fig. 12. Performance comparison of all methods on task-V.

8.6 Performance Comparison (RQ2)

In this section, the detection time of function similarity for all baseline approaches and ASTERIA-
Pro are measured. Since the DK-based prefiltration and DK-based re-ranking modules are intended
to enhance performance in Task-V, we only count the timings in Task-V. In Task-V, given a source
function, methods extract the function features of source and all candidate functions, which is
referred to as phase 1. Next, the extracted function features are subjected to feature encoding and
encoding similarity computation to determine the final similarities, which is referred to as phase 2.

As shown in Figure 12(a), we calculate the average feature extraction time for each function.
The x-axis depicts extraction time, while the y-axis lists various extraction methods. During fea-
ture extraction for one single function, ASTERIA-PRO, Asteria, and Diaphora all execute the same
operation (i.e., AST extraction), resulting in the same average extraction time. Since AST extrac-
tion requires binary disassembly and decompilation, it requires the most time compared to other
methods. Trex requires the least amount of time for feature extraction, which is less than 0.001 s
per function, as code disassembly is the only time-consuming activity.

Figure 12(b) illustrates the average duration of a single search procedure for various methods.
The phases 1 and 2 of a single search procedure are denoted by distinct signs. Due to its efficient
filtering mechanism, ASTERIA-PRO requires the least amount of time (58.593 s) to complete a search.
Due to its extensive pre-training model encoding computation, Trex is the most time-consuming
algorithm. ASTERIA-PRO cuts search time by 96.90%, or 1831.36 s, compared to Asteria (1889.96 s).

Answer to RQ2: AsTERIA-PrO Costs the least average time to accomplish task-V. Com-
pared with Asteria, ASTERIA-PRO cuts search time by 96.90% by introducing the filtering
module.

8.7 Ablation Experiments (RQ3)

To demonstrate the progresses made by different modules of DK-based filtration and DK-based
re-ranking, we conduct ablation experiments by evaluating the different module combinations in
ASTERIA-PRO. The module combinations are Pre-filtering + Asteria and Asteria + Re-ranking. The
two module combinations performs Task-V and the results are shown in Table 5. For Asteria +
Re-ranking, the top 20 similarity detection are re-ranked by the Re-ranking module.
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Table 5. Accuracy of Different Module Combination

Module Combination MRR Recall@Top-1 Recall@Top-10 Average Time (s)
Pre-filtering + Asteria ~ 0.824  0.764 0.929 57.8
Asteria + Reranking 0.882 0.864 0.910 1889.8

Table 6. Integration of Pre-Filtration and Re-Ranking Modules with Alternative BCSD Techniques

Methods Trex Trex-I|Gemini Gemini-I | Safe Safe-I | Diaphora Diaphora-I | Asteria ASTERIA-PRO
MRR 0.310 0.547 |0.334 0.775 0.015 0.533 | 0.020 0.772 0.734 0.908
Recall@Top-1 | 0.192 0.377 | 0.266 0.722 0.003 0.484 | 0.018 0.711 0.657 0.896
Recall@Top-10 | 0.579 0.881 | 0.488 0.865 0.015 0.603 | 0.027 0.878 0.877 0.940

We denote the integration with BCSD method X as X-L

8.7.1 Filtration Improvement. Compared to Asteria, the integration of pre-filtering improves
MRR, Recall@Top-1, and Recall@Top-10 by 12.26%, 16.29%, and 5.93%, respectively. In terms
of efficiency, it cuts search time by 96.94%. The Pre-filtering + Asteria combination performs
better than Asteria + Re-ranking in terms of Recall@Top-10 and time consumption. It generates a
greater Recall@Top-10, because it filters out a large proportion of highly rated non-homologous
functions.

8.7.2  Re-ranking Improvement. Compared to Asteria, the integration of Re-ranking module im-
proves MRR, Recall@Top-1, and Recall@Top-10 by 20.16%, 31.51%, and 3.76%, respectively. In
terms of efficiency, it costs average additional 0.13 s for re-ranking, which is negligible. Compared
to Pre-filtering + Asteria, re-ranking module contributes to an increase in MRR and Recall@Top-1
by enhancing the rank of homologous functions.

8.7.3 Embedding Baseline Methods. We demonstrate the generalizability of innovative BCSD
enhancement framework, by integrating our two new components, pre-filtering and re-ranking,
with other baseline BCSD methods. Specifically, we apply all the baseline methods to compute
the similarity scores between the remaining functions and the source function after pre-filtering.
Subsequently, we rank the remaining functions in descending order based on their similarity scores
and select the top 50 functions for re-ranking. The final similarity score is obtained by combining
the re-ranking score and the score generated by the baseline methods. Using the final similarity
score, we determine the rankings of the top 50 candidate functions and calculate three metrics,
namely, MRR, Recall@Top-1, and Recall@Top-10. Table 6 presents a comparison of the original and
integrated versions of the baseline methods, with the baseline method names listed in the first row
and their corresponding integrated versions in the next column, such as Trex-I for the integrated
version of Trex. The second to fourth rows provide the values of different metrics, namely, MRR,
Recall@Top-1, and Recall@Top-10.

The accuracy of the baseline methods is significantly improved by the addition of our two
components, with Diaphora-I in particular showing a substantial increase in MRR from 0.02 to
0.772. We manually analyzed the outputs of Diaphora and Diaphora-I to understand the rea-
son for the improved ranking of homologous functions. We found that while Diaphora tends to
assign high similarity scores to homologous functions, it also assigns high scores to numerous
non-homologous functions, which lowers the ranking of homologous functions. Specifically, we
found that the average score difference between the highest score (i.e., score of top 1) and the
score assigned to the homologous function is only 0.11. By incorporating reranking scores into
the final scores, Diaphora-I places a higher emphasis on homologous functions, resulting in im-
proved ranking. If homologous functions are present in the top 50 before re-ranking, then they
are mostly ranked at the top. Safe-I also shows improved accuracy, although not as substantial as
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Table 7. Capacity to Filter of Various
Filtering Thresholds

Tncr | # Filtered Function Recall
0.1 9666.7 0.9813
0.2 9734.1 0.9808
0.3 9777.4 0.9791
0.4 9793.5 0.9773
0.5 9805.5 0.9737

Diaphora-I, as Safe tends to rank homologous functions outside the top 50, reducing the impact
of reranking.

The enhancement framework also effectively enhances the accuracy of Asteria. Specifically,
ASTERIA-PRO achieves very high MRR and Recall@Top-1, with a notable margin compared to other
integrated versions of baseline methods. The high accuracy of AsTERIA-PRO enables it to generate
more reliable search results, which can significantly reduce the efforts required for vulnerability
confirmation when applied to bug search tasks.

Answer to RQ3: The filtering significantly cuts the calculation time by 96.94%, and in-
crease precision slightly. Re-ranking improves MRR, Recall@Top-1, and Recall@Top-10
by 20.16%, 31.51%, and 3.76%, respectively, with negligible time costs. Our enhancement
framework, which embeds the BCSD method with pre-filtering and re-ranking modules,
has demonstrated a significant improvement in the accuracy of other baseline methods as
well.

8.8 Configurable Parameter Sensitivity Analysis (RQ4)

ASTERIA-PRO has two sets of configurable parameters: The filtering threshold Txcr in the pre-
filtering algorithm, and the weight values in Equation (15) for the final precision score. In our
evaluation, we analyze the impact of these parameters on ASTERIA-PRO’s performance by testing
different values of Txcr, for pre-filtering and varying weight combinations for the final precision
score.

8.8.1 Different Filtering Threshold. In Algorithm 1, the threshold Ty determines the number
of functions that are filtered out. We evaluate the efficacy of the filtering module by utilizing
various Tycy, values, and the results are presented in Table 7. The threshold values range from
0.1 to 0.5 in the first column, where a higher threshold value suggests a more severe selection
of the similarity function. The second column indicates the number of functions omitted by the
filter, while the third column displays the recall rate in the filteration results. As the threshold value
increases, the recall rate declines and the number of filtered-out functions grows. We use 0.1 as our
threshold value for two key reasons: (a) The high recall rate of filtering results is advantageous for
subsequent homologous function detection, and (b) there is no significant difference in the number
of functions that are filtered out.

8.8.2 Weights in Re-ranking. We conducted a sensitivity analysis of different weight values in
Equation (16). The evaluation results are presented in Table 8. The first two columns display the
combinations of two distinct weights, & and 5, from Equation (16). The last three columns give the
values of various metrics, including MRR, Recall@Top-1, and Recall@Top-10.

We did not test all weight combinations as the accuracy metrics consistently decreased with an
increase in a. As shown in the table, when & = 0.1 and f = 0.9, Asteria-Pro has the best accuracy.
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Table 8. Accuracy of AsTERIA-PRO with Various Weight
Combinations in Equation (15)

a S MRR Recall@Top-1 Recall@Top-10

0.0 1.0 0.901 0.890 0.930
0.1 0.9 0.908 0.896 0.940
0.2 0.8 0905 0.893 0.938
0.3 0.7 0902 0.890 0.937
04 0.6 0900 0.889 0.935
0.5 0.5 0.899 0.887 0.934
1.0 0.0 0.824 0.764 0.929

Table 9. Vulnerability Dataset

Software | CVE # Disclosure Years Vulnerable Version Range
[1.0.0, 1.0.0s]

OpenSSL | 22 2013~2016 [1.0.1, 1.0.1t]
[1.0.2, 1.0.2h]

Busybox | 10 2015~2019 [0.38, 1.29.3]

Dnsmasq | 14 20{15,17,20,21} [2.42, 2.82], 2.86

Lighttpd | 10 20{08,10,11,13,14,15,18} [1.3.11, 1.4.49]

Tepdump | 36 2017 [3.5.1,4.9.1]

The last column sets f to 0.0, meaning the re-ranking score is not included in the final similarity
calculation. Therefore, the results are consistent with the combination “Pre-filtering + Asteria” in
Section 8.7.

Answer to RQ4: The pre-filtering module performs best with a filtering threshold value
of 0.1. This threshold allows ASTERIA-PRoO to filter out 96.67% of non-homologous func-
tions per search, while achieving a recall rate of 98.13%. Regarding the re-ranking score,
we found that non-zero weight values have a relatively small effect on the final accuracy
of AsTERIA-PRO. However, incorporating the re-ranking score significantly improves the
precision of the tool.

8.9 Real World Bug Search (RQ5)

To assess the efficacy of ASTERIA-PrO, we conduct a massive real-world search for bugs. To accom-
plish this, we obtain firmware and compile vulnerability functions to create a firmware dataset
and a vulnerability dataset. Utilizing vulnerability dataset, we then apply ASTERIA-PRO to detect
vulnerable functions in the firmware dataset. To confirm vulnerability in the resulting functions,
we design a semi-automatic method for identifying vulnerable functions. Through a comprehen-
sive analysis of the results, we discover intriguing facts regarding vulnerabilities existed in IoT
firmware.

8.9.1 Dataset Construction. In contrast to our prior work, we expand both the vulnerability
dataset and the firmware dataset for a comprehensive vulnerability detection evaluation.

Vulnerability Dataset. The prior vulnerability dataset of seven CVE functions is enlarged
to 90, as shown in Table 9. Vulnerability information is primarily gathered from the NVD
website [11]. As shown in the first column, the vulnerabilities are collected from widely used
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Table 10. Firmware Dataset and Its Software Statistics

Vendor Firmware Dataset { Software Statistics
Firmware # Binary # Function # | OpenSSL Busybox Dnsmasq Lighttpd Tcpdump
Netgear |548 984 2,627,143 349 512 85 14 24
TP-Link |95 177 427,795 66 90 11 3 7
Hikvision | 90 92 279,299 55 35 0 0 2
Cisco |29 66 60,396 23 26 10 5 2
Schneider | 10 20 31,228 7 9 2 2 0
Dajiang |7 16 57,275 7 7 1 0 1
All 779 1,355 3,483,136 507 679 109 24 36

# denotes number.

open-source software in IoT firmware, including OpenSSL, Busybox, Dnsmasq, Lighttpd, and
Tcpdump. In the second column, the number of software vulnerabilities is listed. In the third
column, the timeframe or specific years of the disclosure of the vulnerability are listed. The final
column describes the software version ranges affected by vulnerabilities. Note that the version
ranges are obtained by calculating the union of all versions mentioned in the vulnerability reports.
As a result, ASTERIA-PRO is expected to generate vulnerability detection results for all software
versions falling within the specified ranges.

Firmware Dataset. We download as much firmware from six popular IoT vendors as we could,
consisting of Netgear [12], Tp-Link [15], Hikvision [9], Cisco [4], Schneider [14], and Dajiang [6]
as shown in first column of Table 10. These firmware are utilized by routers, IP cameras, switches,
and drones, all of which play essential parts in our life. The second column shows the firmware
numbers, which range from 7 to 548. The third and fourth columns give numbers of binaries and
functions after unpacking firmware by using binwalk. Note that the binary number is the number
of software selected to be in the vulnerability dataset. The fifth column to ninth column gives the
five software numbers in all firmware vendors. OpenSSL and Busybox are widely integrated in
these IoT firmware as their numbers are close to those of the firmware. Through querying their of-
ficial websites for device type information, we find that the majority of Hikvision vendor firmware
is for IP cameras, whereas Cisco vendor firmware is for routers. In particular, IP camera firmware
incorporates less software than router firmware, because routers offer more functionality. For ex-
ample, the firmware of the Cisco RV340 router includes OpenSSL, Tecpdump, Busybox, and Dns-
masq, whereas the majority of IP camera firmware only include OpenSSL. Similarly, the majority
of the firmware of Netgear and Tp-Link consists of routers, while Schneider and Dajiang firmware
include specialized devices such as Ethernet Radio and Stabilizers.

8.9.2 Large Scale Bug Search. ASTERIA-PRO is employed to identify vulnerable homologous
functions among 3,483,136 firmware functions by referencing 90 functions from the vulnerabil-
ity dataset. Specifically, to expedite the detection process, vulnerability detection is restricted to
the same software between firmware dataset and vulnerability dataset. For instance, the vulner-
able functions disclosed in OpenSSL are utilized to detect vulnerable homologous functions in
OpenSSL in the firmware dataset. For each software S, we first extract features (i.e., ASTs and call
graphs) of all functions in firmware dataset and vulnerable functions in vulnerability dataset. For
each vulnerability disclosed in S, the pre-filtration module uses the call graph to filter out non-
homologous functions, followed by the Tree-LSTM model encoding all remaining functions as
vectors. ASTERIA-PRO then computes the AST similarity between the vulnerable function vectors
and the firmawre function vector. ASTERIA-PRO computes reranking scores based on the top 20 of
AST similarities based on similarity scores, since the evaluation demonstrates a very high recall
in the top 20. As a final step, ASTERIA-PRO generates 20 candidate homologous functions for each
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Table 11. Numbers of Vulnerable Functions, Software, Firmware in Confirmation Results

vendor Vulnerable Function # Vulnerable Software # Vulnerable
OpenSSL Busybox Dnsmasq Lighttpd Tcpdump All |[OpenSSL Busybox Dnsmasq Lighttpd Tcpdump All|Firmware #
Netgear |367 0 31 0 26 424 133 0 7 0 10 150 | 145 (26.46%)
TP-Link |394 9 0 2 5 410 |36 3 0 2 5 46 |36 (37.89%)
Hikvision | 553 0 0 0 12 565 |52 0 0 0 1 53 |53 (58.89%)
Cisco 0 0 0 0 2 2 0 0 0 0 2 2 2 (6.90%)
Schneider | 10 0 0 0 0 10 1 0 0 0 0 1 1(10.00%)
Dajiang |70 0 0 0 1 71 7 0 0 0 1 8 7 (100.00%)
Total 1,394 9 31 2 46 1,482 | 229 3 7 2 19 260 | 244 (31.32%)

S as a bug search result for each vulnerability. To further refine the bug search results, we com-
pute the average similarity score of homologous functions in Section 8.5 and use it to eliminate
non-vulnerable functions. In particular, the average similarity score of 0.89 is used to eliminate
3,987 of 5,604 results. We perform heuristic confirmation of vulnerability for the remaining 1,617
results.

Vulnerability Confirmation Method. We devise a semi-automatic method for confirming the
actual vulnerable functions from the candidate homologous functions. The method makes use
of the symbols and string literals within the firmware binaries of the target. Specifically, we use
unique regular expressions to match version strings for each software and to extract function sym-
bols from the software. The method is then comprised of two distinct operations that correspond
to two distinct vulnerable circumstances VCy, VCs.

e V(. In this circumstances, the target binary contains version string (e.g., “OpenSSL 1.0.0a”)
and the symbol of target function is not removed.

e VC,. Target binary contains version strings whereas the symbol of vulnerable homologous
function is removed.

The versions of software listed in Table 9 are easy to extract using version strings [27]. The de-
scriptions of the two confirmation operations CO; and CO, are as follows:

e CO,. For VC;, we confirm the vulnerable function based on the version and name of the
target software. In particular, a vulnerable function is confirmed when the following two
conditions are met: (1) Software version is in vulnerable version range, (2) the vulnerable
function name retains after elimination with average similarity score.

e CO,. For VCy, if the software versions are in the range of vulnerable versions, then we man-
ually compare the code between the CVE functions and remaining functions to confirm the
vulnerability.

Results Analysis. In Table 11, We tally the number of vulnerable functions, software, and
firmware upon vulnerability confirmation. The first column contains the names of different
vendors. The second through sixth columns show the amount of vulnerable functions in various
software, while the seventh column indicates the total number of vulnerable functions across all
vendors. The eighth through twelfth columns display the amount of vulnerable software binaries
in various software, while the thirteenth column provides the total number of vulnerable software
binaries. According to the seventh column of Table 10, there are a total of 1,482 vulnerable
functions. 1456 are confirmed by CO;, whereas 26 are confirmed by CO,. For a total of 1,456 CO
vulnerable functions, 1,377 vulnerable functions rank first and 79 vulnerable functions rank second.
CO, is performed on 47 detection results, of which 26 are confirmed. the 21 unconfirmed detection
results can be attributed to two reasons. First, 18 of them were due to the fact that the target bina-
ries detected did not contain any of the target vulnerable functions. For example, we were unable to
detect the vulnerable function “EVP_EncryptUpdate” of CVE-2016-2106 from the “libssl.so” library
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Fig. 13. Number of vulnerable functions detected from five vendors.

of OpenSSL, since it exists in the “libcrypto.so” library. Second, three of the unconfirmed results
were ranked in the top 20 but were subsequently filtered out by the similarity threshold used in
real world bug search setting. A large proportion of vulnerable functions are found in the OpenSSL
software used by the three vendors. The number of vulnerable software is consistent with this
circumstance. The final column shows the number of firmware containing at least one vulnerable
function, together with its proportion of total firmware. Every Dajiang firmware contains at least
one CVE vulnerability, because all OpenSSL components used in firmwareAdare vulnerable. In
addition, Hikvision is detectedAito have a largeAdproportion of vulnerable firmware (58.89%). To
inspect the CVE vulnerable function distribution, we plot the top 10 CVEs and their distributions
in five vendors except Cisco in Figure 13, since Cisco takes additional two CVEs.

e Top 10 CVE Analysis. Figure 13 demonstrates the top 10 CVE distribution in various ven-

dors. The total number of discovered CVE vulnerabilities decreases from left to right along
the x-axis. Except for CVE-2015-0287, all of the top 10 CVE vulnerabilities are discovered
in every Dajiang firmware. This is because Dajiang utilizes an outdated version of OpenSSL
1.0.1h that contains numerous vulnerable functions [13]. Although Hikvision firmware has
the third largest number of firmware, it has the most vulnerable functions in our experiment
settings. The reason for this is that Hikvision firmware heavily uses OpenSSL-1.0.1e (184)
and OpenSSL-1.0.11 (401) versions, both of which contain a large number of vulnerabilities.
Finding: Since they typically adopt the same vulnerable software version, it is highly plau-
sible that firmware from the same vendor and released at the same period contains identical
vulnerabilities. Security analysts can quickly narrow down the vulnerability analysis based
on the firmware release date.

CVE and Version Analysis. Figure 14 Depicts the distribution of vulnerable OpenSSL
versions for various CVEs from various vendors. Where the x-axis represents the version
and the y-axis represents the CVE ID associated with the vulnerability. Each square in each
subfigure indicates the number of OpenSSL versions that are vulnerable and contain the
corresponding CVE along the y-axis. The number is greater the lighter the red colour. The
left subfigure demonstrates that OpenSSL 1.0.2h is widely used by Netgear, resulting in a
significant number of CVE-2016-2180 vulnerabilities (92). Additionally, OpenSSL version
1.0.1e exposes the majority of CVEs listed on the y-axis, which may increase the device’s
attack surface. The TP-Link firmware incorporates OpenSSL version 1.0.1e, resulting in
brighter hues. Hikvision firmware utilizes versions 1.0.1e and 1.0.11, which are vulnerable to
a number of CVEs. Comparing vulnerability distribution in OpenSSL version 1.0.1e among
different vendors reveals inconsistencies in the existence of vulnerabilities. For instance,
CVE-2016-2106 is present in OpenSSL 1.0.1e from Hikvision but not from Netgear and
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Fig. 14. Distribution of CVEs for different OpenSSL versions in vendors (a) Netgear, (b) TP-Link, and
(c) Hikvision.

TP-Link. Finding: Despite using the same version of software, various vendor firmware
behaves differently in terms of vulnerability, since they can tailor the software to the
device’s specific capabilities.

CVE-2016-2180 Analysis. The CVE-2016-2180, which is a remote Denial-of-Service flaw
caused by received forged time-stamp file, impacting OpenSSL 1.0.1 through 1.0.2h, exists
in 207 firmware. NETGEAR is responsible for 117 of these, as it deploys 92 OpenSSL 1.0.2h
out of a total of 548 firmware. NETGEAR incorporated an extra nine OpenSSL 1.0.2 series
software and sixteen OpenSSL 1.0.1 series software. The vulnerable version 1.0.2h was
released in May 2016, and by comparing their timestamps, we determined that OpenSSL
1.0.2h was integrated into firmware between 2016 and 2019. Finding: Even after their
vulnerabilities have been discovered, the vulnerable versions of software continue to be
used for firmware development.

Based on the confirmation results, ASTERIA-PRO manages to detect 1,482 vulnerable functions
out of 1,617 bug search results, indicating that ASTERIA-PRO achieves a high vulnerability detec-
tion precision of 91.65% under our experiment settings. By randomly selecting 1,000 of 5,604 bug
search results, we manually validate the existence of vulnerabilities in software binaries to calcu-
late the recall. Among 1,000 bug search results, 205 target functions are confirmed to be vulnerable
by checking software versions and the vulnerable functions. Targeting 205 vulnerable functions,
ASTERIA-PRO detects 53 of them, representing a recall rate of 25.85%.

Finding Inlined Vulnerable Code. During the analysis of mismatched cases, in which the
target homologous functions are not in the top ranking position, we observe that the top-ranked
functions contain the same vulnerable code. We use CVE-2017-13001 as an illustration of inlined
vulnerable code detection. CVE-2017-13001 is a buffer over-read vulnerability in the Tcpdump
nfs_printfh function prior to version 4.9.2. After a confirmation operation CO;, ASTERIA-PRO
reports a single function, parsefh as being vulnerable. We manually compare the decompiled code
of the parsefh function to the source code of nfs_printfh in tcpdump version 4.9.1 (i.e., vulnerable
version). Figure 15 demonstrates that the source code of nfs_printfh (on the left) and the partial
code of parsefh (on the right) are consistent. We designate codes with apparently identical
semantics with distinct backdrop hues. In other words, during compilation, function nfs_printfh
is inlined into function parsefh. As a result, the function parsefh contains CVE-2017-13001
vulnerable code, and AsTERIA-PRO manages to identify the inlined vulnerable code. AsTERIA-PRO
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Fig. 15. Inlined vulnerable function in detected function. the semantics of the code with the same back-
ground color are same.

has detected an additional eight instances of inlined vulnerable code out of 20 functions in
vulnerable circumstance VC,.

The preceding analysis and conclusions are constrained by the dataset we constructed, which
offers security analysts some recommendations for the security analysis of firmware.

Answer to RQ5. We employ 90 CVE vulnerabilities to search for bugs in 3,483,136 real
firmware functions. ASTERIA-PRO detects 1,482 vulnerable functions with a high level of
precision of 91.65%. In addition, the capability of AsTERIA-PRro to identify inlined vulnera-
ble code is stated and illustrated in detail. In conclusion, ASTERIA-PRO generates bug search
results with a high degree of confidence, thereby reducing analysis labor by a substantial
margin.

9 THREATS TO VALIDATION

Threats to internal validity come from these aspects.
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e We use vulnerable version ranges collected from the NVD website to aid vulnerability con-
firmation in a real-world bug-search experiment. The vulnerable version ranges may be in-
accurate, and vulnerabilities may be missed or incorrectly stated. We will conduct additional
verification of the susceptible version ranges by confirming the existence of vulnerable code.

e We adopt IDA Pro to decompiling and generate ASTs from the functions in binaries. As
pointed by study [47], accurate decompiling and binary analysis is not easy. The errors in
AST generation may affect the AST similarity calculation and further affect the results.

Threats to external validity rise from following issue.

e In practice, firmware binaries may be compiled with distinct compiler (e.g., clang), compiler
version, and optimization level for special-purpose compilation. Different compilation con-
figurations alter the AST structures and call graphs, sometimes leading in lower scores for
homologous functions.

10 DISCUSSION
10.1 How does the re-ranking module solve the function inline issues?

Inlining functions is a common optimization technique used by compilers to improve the perfor-
mance of code execution. The decision of whether or not to inline a function is based on various
factors, including the size of the function, the frequency of function calls, and the complexity of
the code. In general, inlining smaller functions tends to be more beneficial than inlining larger
functions.

When smaller functions being inlined, the re-ranking module in Asteria-Pro will be capable of
handling inline issues by considering both function similarities and the match of callee relational
structures. Specifically, the module matches all callee functions between the source function and
target functions, which allows for high similarity even if one callee function is inlined to the target
function. This is because the target function can still maintain a relatively high similarity with the
source function even after incorporating inlined code, and the un-inlined callee functions still
contribute to the final similarity score. As a result, Asteria-Pro exhibits high metric values (i.e.,
recall and MRR) in our evaluation based on the contribution of the target function code and all its
callee functions. Through manual analysis of search results in real-world bug detection, we have
also demonstrated that Asteria-Pro is capable of finding homologous vulnerable functions that
contain inlined function code.

10.2 What is the Design Difference between Pre-Filtering, Re-Ranking and SCA Tools

Some software composition analysis (SCA) tools have adopted similar feature when compar-
ing to the pre-filtering and re-ranking module of AsTERIA-PRO. For example, Modx [69] matches
string literals and whole call graph between two libraries, and LibDB [60] adopts string literals
and exported function names to measure the similarity of libraries. The usages of string literals
and call graphs are quite straightforward.

However, we would like to highlight some conceptual-level differences between our approach
and these prior works. While the use of string literals and call graphs is indeed straightforward,
it can be challenging to apply them to function matching, particularly when functions lack string
literals or are leaf nodes in call graphs. Additionally, callee functions of a target function may not
be exported functions, meaning that function names are removed and cannot be used for matching.

To address these challenges, our approach differs from SCA methods in several key ways. First,
we utilize the local context extracted from call graphs in both the pre-filtering and re-ranking
modules to efficiently remove non-homologous functions and confirm homologous ones. Second,
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we introduce an algorithm called “UpRelation” to utilize caller relations from call graphs in pre-
filtering. The algorithm leverages the genealogist of parent nodes to identify potential homologous
functions. It achieves this by matching the genealogist of parent nodes and retaining the child
nodes of the matched parent nodes. This approach is particularly useful when the target function
is a leaf node in the call graph and does not contain any string literals. Last, our re-ranking module
considers both structural and semantic similarities of functions, resulting in more accurate ranking
of homologous functions. Specifically, the re-ranking module uses Asteria to calculate similarities
when callee functions are not exported functions.

10.3 What Will AsTERIA-PRO Perform on Cross-Optimization Settings?

Although we did not evaluate the performance of ASTERIA-PRO in cross-optimization settings,
it is worth discussing the potential impact of such settings on the performance of our method.
Cross-optimization refers to the situation where the training and testing sets are compiled with
different optimization settings. This is a common scenario in practice as different developers may
use different optimization flags, or the same developer may use different optimization levels for
different releases. Previous studies have shown that cross-optimization can significantly affect the
accuracy of BCSD methods, as the semantic features extracted from the binary code may change
depending on the optimization settings. For instance, in a study by Liu et al. [46], the accuracy of
a state-of-the-art BCSD method dropped from 95.3% to 46.2% when tested in cross.

In the case of our method, Asteria-Pro, which is based on the Tree-LSTM architecture, the im-
pact of cross-optimization on its performance is likely to be substantial. This is because Tree-LSTM
model is sensitive to AST structure and summarizes semantics by identifying structure patterns.
Therefore, if the source and target functions are compiled with different optimization settings,
then the Tree-LSTM may not be capable to summarize the expected semantic from substantial
AST structure transformation and thus produce inaccurate results.

Moreover, training our model on cross-optimization settings would require significant computa-
tional resources and time, which may not be feasible in practice. Therefore, we have not evaluated
our method on cross-optimization settings in this study. Nevertheless, we acknowledge that cross-
optimization is an essential consideration for evaluating Asteria-Pro’s generalizability, and we
encourage future studies to investigate this aspect further.

11 RELATED WORKS
11.1 Feature-based Methods

When considering the similarity of binary functions, the most intuitive way is to utilize the assem-
bly code content to calculate the edit distance for similarity detection between functions. Khoo et al.
concatenated consecutive mnemonics from assembly language into the N-grams for similarity cal-
culation [43]. David et al. proposed Trecelet, which concatenates the instructions from adjacent
basic blocks in CFGs for similarity calculation [24]. Saebjornsen et al. proposed to normalize/ab-
stract the operands in instructions, e.g., replacing registers such as eax or ebx with string “reg”,
and conduct edit distance calculation based on normalized instructions [55]. However, binary code
similarity detection methods based on disassembly text can not be applied to cross-architecture
detection, since the instructions are typically different in different architectures. The works in
References [19, 31, 54, 66] utilize cross-architecture statistical features for binary code similarity
detection. Eschweiler et al. [31] defined statistical features of functions such as the number of in-
structions, size of local variables. They utilized these features to calculate and filter out candidate
functions. Then they performed a more accurate but time-consuming calculation with the graph
isomorphism algorithm based on CFGs. Although this method takes a pre-filtering mechanism,
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the graph isomorphism algorithm makes similarity calculation extremely slow. To improve the
computation efficiency, Feng et al. proposed Genius, which utilizes machine learning techniques
for function encoding [33]. Genius uses the statistical features of the CFG proposed in Reference
[31] to compose the ACFG. Then it uses a clustering algorithm to calculate the center points of
ACFGs and forms a codebook with the center points. Finally, a new ACFG is encoded into a vec-
tor by computing the distance with ACFGs in the codebook and the similarity between ACFGs is
calculated based on the encoded vectors. But the codebook calculation and ACFG encoding in Ge-
nius are still inefficient. Xu et al. proposed Gemini based on Genius to encode ACFG with a graph
embedding network [65] for improving the accuracy and efficiency. However, the large variance
of binary code across different architectures makes it difficult to find architecture-independent
features [26].

11.2 Semantic-based Methods

For more accurate detection, semantic-based features are proposed and applied for code similarity
detection. The semantic-based features model the code functionality, and are not influenced by dif-
ferent architectures. Khoo et al. applied symbolic execution technique for detecting function simi-
larity [49]. Specifically, they obtained input and output pairs by executing basic blocks of a function.
But the input and output pairs can not model the functionality of the whole function accurately.
Ming et al. leveraged the deep taint and automatic input generation to find semantic differences
in inter-procedural control flows for function similarity detection [52]. Feng et al. proposed to ex-
tract conditional formulas as higher-level semantic features from the raw binary code to conduct
the binary code similarity detection [32]. In their work, the binary code is lifted into a platform-
independent intermediate representation (IR), and the data-flow analysis is conducted to con-
struct formulas from IR. Egele et al. proposed the blanket execution, a novel dynamic equivalence
testing primitive that achieves complete coverage by overwriting the intended program logic to
perform the function similarity detection [30]. These semantic-based features capture semantic
functionalities of a function to reduce the false positives. Pei et al. proposes Trex [53], applying
a transfer-learning-based framework to automate learning execution semantics from functions’
micro-traces, which are forms of under-constrained dynamic traces. However, the methods above
depend heavily on emulation or symbolic execution, which are not suitable for program analysis in
large-scale IoT firmware, since the emulation requires peripheral devices [20, 35, 72] and symbolic
execution suffers from the problems of path explosion.

11.3 AST in Source Code Analysis

Since the AST can be easily generated from source code, there has been research work proposed
to detect source code clone based on AST. Baxter et al. proposed to hash ASTs of functions to
buckets and compare the ASTs in the same bucket [17] to find clones. Because the method pro-
posed in Reference [17] is similar to Diaphora, which hash ASTs, we only perform a comparative
evaluation with Diaphora. In addition to the code clone detection, AST is also used in vulnerability
extrapolation from source code [67, 68]. To find vulnerable codes that share a similar pattern,
Fabian et al. [68] encoded AST into a vector and utilized the latent semantic analysis [25] to
decompose the vector to multiple structural pattern vectors and compute the similarity between
these pattern vectors. Yusuke Shido et al. proposed an automatic source code summary method
with extended Tree-LSTM [57].

12 CONCLUSION

In this work, we present ASTERIA-PRO, a domain knowledge-enhanced BCSD tool designed
to detect homologous vulnerable functions on a broad scale in efficient and accurate manner.
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ASTERIA-PRO introduces domain knowledge before and after deep learning model-based function
encoding to eliminate a large proportion of non-homologous functions and score homologous
functions higher, separately. The pre-filtering module makes extensive use of function name infor-
mation prior to function encoding to accelerate the function encoding. The function call structure
is utilized by the re-ranking module following function encoding to calibrate the encoding
similarity scores. ASTERIA-PRO is capable of finding homologous functions rapidly and precisely,
according to a comprehensive comparison with existing state-of-the-art research. Furthermore,
ASTERIA-PRO manages to find 1,482 vulnerable functions in the real-world firmware bug search
experiment with high precision of 91.65%. The search results for CVE-2017-13001 demonstrate
AsSTERIA-PRO successfully finds inlined vulnerable code. ASTERIA-PRO can aid in detecting
vulnerabilities from large-scale firmware binaries to mitigate the attach damage on IoT devices.
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