
Advancing Binary Code Similarity Detection via
Context-Content Fusion and LLM Verification

Chaopeng Dong1,2,*, Jingdong Guo1,2,*, Shouguo Yang3, Yi Li4, Dongliang Fang1,2,†,
Yang Xiao1,2,†, Yongle Chen5, Limin Sun1,2

1Institute of Information Engineering, CAS, China
2School of Cyber Security, University of Chinese Academy of Sciences, China

3Zhongguancun Laboratory, China
4Nanyang Technological University, Singapore

5College of Computer Science and Technology, Taiyuan University of Technology, China

{dongchaopeng, guojingdong, fangdongliang, xiaoyang, sunlimin}@iie.ac.cn,
yangshouguo@outlook.com, yi li@ntu.edu.sg, chenyongle@tyut.edu.cn

Abstract—Binary Code Similarity Detection (BCSD), essential
for binary-code related tasks like vulnerability detection, has
attracted increasing attention in recent years. However, existing
methods frequently fall short of achieving both high precision
and recall at scale, and their results often lack interpretability
due to the neglect of function context and reliance on purely
similarity-driven outputs. Our key insights are twofold: 1) Binary
functions are not self-contained; they depend on other code and
data beyond their content to fulfill their functionalities. 2) Large
language models (LLMs) excel not only at analyzing code but
also at generating reasonable explanations. Motivated by these
insights, we propose a general BCSD framework, Co2FuLL.
We first systematically select stable and representative code and
data features, along with their corresponding dependencies on the
functions, to construct the function context. Then, by fusing func-
tion context with content similarities computed by the existing
BCSD approach, we substantially narrow down the search space.
Ultimately, we employ LLMs with a carefully designed prompt
to verify the remaining candidates and produce clear, human-
readable explanations. We conduct comprehensive experiments
on a large function pool under varying compilation settings and
after binary stripping. The results show that Co2FuLL based
on HermesSim and DeepSeek-V3 achieves 80.5% precision and
94.4% recall, improving the baseline HermesSim by 142.5%
and 42.2%, respectively, providing an accurate and interpretable
solution for BCSD.

Index Terms—vulnerability detection, binary code similarity
detection, large language model, function context

I. INTRODUCTION

Binary code similarity detection (BCSD) is a core technique
underpinning various downstream security tasks, including
vulnerability detection [1]–[7], malware detection and clus-
tering [8]–[10], software plagiarism detection [11], software
supply chain analysis [12]–[14], and patch analysis [15], [16].
With the rapid advancements in artificial intelligence (AI)

* These authors contributed equally to this work.
† Corresponding authors
This Work was done while the first author was at Nanyang Technological

University.

and natural language processing (NLP), BCSD research is
shifting from traditional rule-based techniques [1], [17] to
learning-based approaches [2], [4], [18], [19], which offer
better scalability and accuracy. Figure 1 illustrates a typical
BCSD pipeline, which includes a learning-based matching
step followed by manual verification by security practitioners.
Given a query function and a pool of candidate functions: ❶
Features are extracted from appropriate code representations
such as control flow graphs (CFGs), producing a variety of
input formats; ❷ A neural network encoder (e.g., GGNN)
maps these features into high-dimensional embeddings, and
similarity scores are computed between the query and each
candidate. The top-K or threshold-filtered candidates are re-
tained; ❸ Finally, analysts manually inspect the results to
identify true positives (i.e., target functions).

Limitations of Existing Approaches. Researchers have long
pursued more representative binary features and advanced
neural network models to enhance embeddings and improve
BCSD performance [2], [4], [19], [20]. Despite these advance-
ments, current approaches still suffer from two limitations:

• L1: Difficulty in achieving both high precision and
recall at scale. Modern software systems typically consist
of thousands of binaries and millions of functions. Within
such vast search spaces, numerous irrelevant functions may
exhibit high similarity to a given query, either due to
shared structural patterns or superficial feature overlap. This
forces analysts into an unfavorable trade-off: adopt stricter
matching thresholds and risk missing true positives, or apply
looser thresholds and incur a high false positive rate. As
demonstrated by our preliminary study in Section II-A, even
the best result achieved by HermesSim yielded only 33.2%
precision and 66.4% recall.

• L2: The output lacks interpretability. The function em-
beddings generated by existing methods are optimized for
computations but remain semantically opaque to humans.

Code Sentence

❶ Feature Extraction

AST
ADD

2

STORE

0x100
2

CALL

LOAD

Foo

RETBR

1 1

SOG

Input

❷ Model Embedding and Similarity Calculation

Function
embeddings

Embedding
space

Cosine
similarity To

p-
K

Suspicious
target functions

Query function

Function pool

Sort

Representations

Control Flow
Graph

Assembly Code

Pseudo Code

Intermediate
Representation

Input features

To
ke

ni
za

tio
n

&
N

or
m

al
iz

at
io

n

0, 1, ..., 10

ACFG

3, 2, ..., 5 7, 4, ..., 9

10, 17, ..., 28

block
if

le
var

return

num
callblock

Neural network
model

Struct2Vec

Tree-LSTM

Transformer

GGNN

❸ Verification

False
positives

True
positive

Output

Query

Target

Others Th
re

sh
ol

d

Fig. 1: Pipeline of the BCSD task. ❶ and ❷ are automated processes, while ❸ is a manual process.

As a result, security analysts must scrutinize suspicious
target functions from the ground up, without any interpretive
assistance from the output, making the process both time-
intensive and error-prone.

In the era of large language models (LLMs), numerous re-
searchers have integrated LLMs into a wide array of software
engineering tasks, including code generation [21], [22], code
summarization [23], [24], and program repair [25], [26].
Motivated by these advancements, we seek to incorporate
LLMs into the BCSD task to classify suspicious functions
and generate explanatory outputs, addressing both limitations.
However, directly using LLMs is impractical due to L3: the
large volume of candidate functions causing significant
LLM time and financial costs overhead. Based on our pre-
liminary study Section II-A, although current BCSD methods
remove many irrelevant functions, they still produce hundreds
of thousands of false positives needing verification.
Our Approach. The analysis of binary functions reveals that
they do not exist in isolation; their associated code, data,
and dependencies are vital for reducing both false positives
and false negatives. In light of this, we define the code,
data, and their dependencies associated to the function as the
context, and propose a general BCSD framework, Co2FuLL
(Context–Content Fusion and LLM Verification). The core
idea of Co2FuLL is to fuse function content and context
information to efficiently narrow down the search space and
utilize LLM to verify the remaining candidates. Its workflow
consists of two main stages: 1) Candidate Retrieval. We
build the function context with extracted stable binary features
and their code and data dependencies. In parallel, we generate
function embeddings with the existing BCSD tool as the func-
tion content. Content and context similarities are subsequently
computed and fused to rank candidate functions, with the top-
K results forwarded to the next stage. 2) LLM Verification.
For each top-K candidate, we extract its code snippets and
pair them with the query function, accompanied by an LLM
instruction crafted through a carefully designed prompt. This
composite input is submitted to the LLM, which assesses
whether the candidate is the target function and generates an
explanation to facilitate manual verification. It is important to
emphasize that our goal is not to create a new model that
outperforms existing BCSD methods in embedding quality.
Instead, we aim to build a general BCSD framework that

improves the effectiveness of current methods and reduces the
manual verification effort.
Evaluation. To evaluate the impact of function context on
improving existing BCSD methods across different compila-
tion settings, we compare original baselines with their context-
augmented versions on a large function pool. Context improves
retrieval MRR by 55.9% on average. The combination of
HermesSim and context recalls 98.2% of target functions in
the top-5, greatly reducing false positives and lowering LLM
time and cost (resolve L3).

To evaluate LLM verification accuracy, we apply 4 prompt-
ing techniques with 6 prompts, testing 5 LLM settings across
7 LLMs (general, task-specific, and reasoning). Results show
LLMs achieve high precision and recall, provide reasonable
explanations, showing great utility and reasonability, and im-
prove manual verification accuracy by 6.5%, and reduce time
cost by 34.9% (resolve L2).

To evaluate Co2FuLL on BCSD, we employ the optimal
configuration (HermesSim+context, DeepSeek-V3 LLM, Few-
shot prompt) against baseline methods. The results demon-
strate that Co2FuLL attains 80.5% precision and 94.4%
recall, outperforming the original BCSD method HermesSim
by 142.5% in precision and 42.2% in recall, while incurring
only minimal additional time and financial cost (resolve L1).
Contributions. Our contributions are summarized as follows:
• We systematically illustrate the BCSD task workflow and

highlight the limitations of existing approaches through a
preliminary study on a large function pool.

• We propose Co2FuLL, a novel BCSD framework that
combines function context and content with LLM-based
verification to accurately identify target functions at scale.
The framework is general, lightweight, and compatible with
all existing BCSD methods. We open-source Co2FuLL
at [27] to facilitate the following research.

• We conduct extensive experiments to evaluate Co2FuLL on
the BCSD task, systematically exploring LLM performance
across prompting techniques and settings. Results show
Co2FuLL achieves high precision and recall, strengthens
existing methods, and greatly reduces manual effort.

II. PRELIMINARY STUDY AND MOTIVATION

In this section, we present a preliminary study and vivid
example to underscore the limitations of existing approaches
and to motivate our proposed work.

A. Preliminary Study of Existing Approaches

To reveal the limitations of existing BCSD approaches, we
conduct a study on 714,084 functions across 24 projects within
the BinKit dataset [28]. We randomly select 1,000 query func-
tions, each paired with a function pool comprising 10,000 can-
didate functions compiled under diverse settings. The details
of the dataset construction are presented in Section IV-A. We
then select four state-of-the-art BCSD approaches, GMN [18],
Trex [6], Asteria [4], and HermesSim [19], which have been
extensively evaluated in prior studies, to compute similarities
between the query and candidate functions and rank the
candidates accordingly. Finally, we vary the threshold from
0 to 1 and adjust the Top-K value from 1 to 50 to compute
the precision (P) and recall (R) of approaches. Given our
stronger emphasis on recalling target functions, a critical
concern in real-world scenarios such as vulnerability detection,
we introduce F2 score as a comprehensive metric as follows:

P =
TP

TP + FP
,R =

TP
TP + FN

,F2 =
5 · P · R
4 · P + R

(1)

TP, FP, and FN represent the number of correctly recalled
target functions, non-target functions incorrectly recalled, and
target functions that are not recalled, respectively.

GMN Trex AsteriaHermesSim0

25

50

75

100

Va
lu

e
(%

)

(a) Thresholds (0.1, 0.3, 0.5, 0.7, 0.9)
F2 score Precision Recall

GMN Trex AsteriaHermesSim0

25

50

75

100

Va
lu

e
(%

)

(b) Top-K (1, 5, 10, 30, 50)

Fig. 2: Results across approaches. The left figure shows results
by thresholds, while the right shows results by Top-K values.

Figure 2 presents the results of the four approaches. As
observed, using a looser strategy, i.e., lower thresholds or
higher Top-K values, improves recall. However, this gain
comes at the cost of a significant rise in false positives and
a corresponding drop in precision, increasing the burden of
manual verification (step ❸ in Figure 1). Even the most ef-
fective approach, HermesSim, only attains its best F2 score of
55.3%, with a precision of 33.2% and a recall of 66.4%, when
the top-K is set to 1. In short, current BCSD methods fail to
achieve both high precision and recall at scale, forcing analysts
to review many candidates and incurring heavy manual effort
and time costs.

B. Motivating Example

We select three function pairs (Ai, Bi), i ∈ {1, 2, 3} from
the project gsl-2.5 [29], compiled with different settings to
illustrate our motivation. We apply four BCSD methods to
compute similarities, shown in red above the CFGs in Fig-
ure 3a. Negative pairs (A1, B1) and (A3, B3) yield high
similarities from similar code and structure, causing false
positives. The positive pair (A2, B2) shows low similarities

(a
) C

FG

❶ ❷

(b
) D

G

❸

A3 computes a weighted sum of vector differences, while B3 performs a linear
combination of vectors. The operations, mathematical logic, and return types differ
significantly, indicating they are compiled from the different source code. (3.82s)

Analyze the code (A3, B3) and determine whether they are compiled from the same code.

Function pair
Imported function

StringSimilar code
Dissimilar code Code/data dependency

0.89 BCSD Similarity
Nameless function

0.06s Time cost

(c
) L

LM
 re

sp
on

se

0.06s 0.06s 0.06s
GMN:0.89,Trex:0.92,

Asteria:0.80, HermesSim:0.83
GMN:0.27,Trex:0.25,

Asteria:0.57, HermesSim:0.44
GMN:0.97,Trex:0.91,

Asteria:0.93, HermesSim:0.85

Fig. 3: A motivating example. The figure shows BCSD similar-
ities across four methods, followed by the functions’ control-
flow graphs (CFGs), dependency graphs (DGs), and the LLM
response for the function pair (A3, B3). The common regions
of the DGs are highlighted with an orange background.

due to compilation differences, resulting in false negatives
across all methods.

Since these function pairs are hard to distinguish by content
alone, we focus on their dependency graphs (DGs), as shown
in Figure 3b. The central DG section highlights shared nodes
and edges. The negative pair (A1, B1) differs: A1 indirectly
depends on imports i2, i3, i4 via nameless functions, while B1

directly depends on imports i5, i6, and string s2. In contrast,
the positive pair (A2, B2) shows strong DG similarity, with
both connected to imports i1, i2, and string s1 through
shared dependencies. Thus, these two pairs can be easily
distinguished by analyzing DG similarities and differences.

For the false positive pair (A3, B3), which shows high
BCSD similarity and shares most DG nodes and edges, we fed
their code snippets into an LLM for classification (Figure 3c).
The LLM accurately summarized the functions, correctly
classified the pair as negative, and provided a reasonable
explanation. However, it was inefficient, taking 3.82 seconds,
over 50 times longer than BCSD similarity computations.

Building on the above observations, we distill our motiva-
tion into two key insights.
�Insight-1. Binary functions are not isolated in binary. The
related code and data dependencies in DGs offer a valuable
alternative perspective for assessing function similarity.
�Insight-2. LLMs can accurately identify functions and pro-
vide reasonable explanations, yet are limited by inefficiency.

III. METHODOLOGY

Figure 4 illustrates the workflow of Co2FuLL, which
consists of two main stages: ① Candidate Retrieval and ②
LLM Verification. The input consists of a query function and
a function pool. The output is the target functions for the query.

Content
encoding

Context
encoding

Query function

Function pool

① Candidate Retrieval

Context
similarity

Dependency graphs
and model features

Ranking

Query function Candidate function Imported function Dependency

Content
similarity

Embeddings

Vectors
Top-K

Selection

② LLM Verification

PromptQuery code

Candidate code

Explanation

Classification

LLM

1 2 1

2 1 2

Target functions

String

Fig. 4: Overall workflow of Co2FuLL

The goal of the Candidate Retrieval stage is to swiftly
narrow down the search space while ensuring a high recall rate
of the target functions. We begin by constructing dependency
graphs for both query and candidate functions and extracting
features for the BCSD model. Next, we generate context
vectors and content embeddings independently to compute two
similarity scores, which are then fused to rank the candidates,
with the Top-K subsequently forwarded to the next stage.

The LLM Verification stage classifies the Top-K candidates
and provides clear explanations. Each candidate is paired
with the query function and fed into an LLM through a
carefully crafted prompt. The LLM then determines whether
the candidate matches the query and generates a corresponding
explanation to substantiate its judgment.

A. Candidate Retrieval

LLMs cannot be directly applied to large function pools
owing to prohibitive time and financial costs. Candidate re-
trieval aims to eliminate irrelevant functions by leveraging two
principal sources of information: context and content.

1) Function Context: Function context offers an alternative
perspective for capturing function semantics, distinct from that
conveyed by function content. As highlighted in Section II-B,
functions within a binary are not self-contained; they rely on
other code and data to achieve their functionality, with such
dependencies often propagating recursively. Therefore, we
aim to capture the function context by leveraging features in
binaries alongside their associated dependency relationships.

We first provide the rationale for context feature selection
following two principles: (1) The extraction and computation
of features should remain lightweight to ensure scalability.
(2) The features should be stable across different compilation
settings and resilient to binary stripping. Thus, we select five
features that allow lightweight extraction and computation [3],
[30](i.e., satisfying Principle 1): imports (imp), strings (str),
constants (const), the number of CFG edges (edge), and the
number of CFG nodes (node). We then further evaluate their
stability (i.e., whether they satisfy Principle 2) by conducting
experiments on binaries. To this end, we extract these features
from stripped binaries and group them by projects and file
names. For each group, we randomly select two binaries
compiled under different settings, align the source feature set

Ssrc with the target set Stgt, and measure stability with the
proportion of matched features as in Equation (2).

ρfeat =
|Ssrc

⋂
Stgt|

|Ssrc|
, feat ∈ {str, imp, const, node, edge} (2)

imp str const node edge
0

50

100

Pr
op

or
tio

n
(%

)

93.2 91.4
72.9

60.0 57.4

(a) Stability

T1 T2

0

25

50

75

100

Pr
op

or
tio

n
(%

)

51.7

71.1

(b) Universality

NT1 NT2
0

2

4

Fu

nc
tio

ns
 p

er
 c

on
te

xt

4.1

2.0

(c) Discriminability

Fig. 5: Average results of the stability of context features,
universality, and discriminability of the context studies. The y-
axis in Figures (a) and (b) represents the proportion, whereas
the y-axis in Figure (c) indicates the average number of
functions per distinct context.

Figure 5a shows the stability of candidate features. Imports
(93.2%) and strings (91.4%) remain highly consistent across
compilation settings and after stripping. In contrast, constants,
the number of nodes, and the number of edges show lower
stability due to compilation effects (e.g., substitutions such as
“> 5” vs. “≥ 6”, and loop unrolling). Thus, we only select
imports and strings to form the function context.

Based on the selected features, we quantify their relationship
strength with functions by measuring the shortest dependency
path length (minimum distance) between them in the DG. We
then define the function context as follows:

Definition 1 (Function Context): Let F = {f1, f2, . . . , fn}
denote the set of functions,N = {n1, n2, . . . , nk}, ni ∈ I

⋃
S

denote the set of feature nodes in DG. I and S are the sets
of imports and strings, respectively. The function context is:

C(fi) = [d(fi, n1), d(fi, n2), . . . , d(fi, nk)] (3)

where d(fi, nj) denotes the minimum distance (set to ∞
if unreachable) between function fi and feature node nj in
DG. Since each function may contain feature nodes absent
in the other, we assign a value of ∞ to missing nodes when
computing context similarity.

Algorithm 1: Function Context Construction
Input: The set of functions F , imports I and strings S
Output: Function context C

1 Initialize C, D, and DG;
2 for ni ∈ F

⋃
S do

3 for Sf ∈ GetDependFuncs(ni) do
4 DG.add edges(ni, Sf)
5 end
6 end
7 for n ∈ I

⋃
S do

8 D(n)← Dijkstra(DG, n)
9 end

10 for f ∈ F do
11 C(f)← [D(f, n1), . . . ,D(f, nk)], ni ∈ I

⋃
S

12 end
13 return C;

For example, the function context for the query function fq and
the candidate function fc in Figure 4 are C(fq) = [1, 2, 1,∞]
and C(fc) = [2, 1,∞, 2], respectively.

To improve function retrieval, the function context must
satisfy two attributes. 1) Universality: it should be common
across functions; 2) Discriminability: it should make functions
easily distinguishable, with few sharing the same context. To
demonstrate these, we conduct two studies:

Universality Study. To evaluate context universality, we
compute the proportion of functions that contain context with:

ϕ =
Mt

N
, t ∈ {T1, T2} (4)

Here, Mt and N are the number of functions with context
and the total functions, respectively. To assess the impact
of indirect dependencies, we group the associations between
functions and features into two types. T1: the function directly
depends on the feature (d(fi, nj) = 1); T2: the function
depends on the feature via a dependency path in the DG
(d(fi, nj) ≥ 1 and d(fi, nj) ̸=∞). For example, in Figure 3b,
B1 directly depends on i5, i6, s2 (T1), while A1 depends on
i2, i3, i4 via paths (T2). Figure 5b shows universality results:
with T1, only 51.7% (ϕT1) of functions have context, whereas
in T2, the proportion increases to 71.1% (ϕT2), demonstrating
strong universality, as the majority of functions benefit from
contextual enhancement.

Discriminability Study. To evaluate context discriminabil-
ity, we first filter functions in Section II-A by project, file,
and function name, yielding 29,099 unique functions. We then
group them by distinct contexts and count the number of
functions for each context as Nt, where t ∈ T1, T2. Figure 5c
presents the discriminability results: under T1, an average of
4.1 functions share the same context, whereas with T2, the
number falls to 2.0, reflecting a strong discriminability.

Algorithm 1 shows the procedure for constructing the func-
tion context, which can be divided into three main steps:

1) Dependency Graph (DG) Construction (lines 1–6): Fol-
lowing initialization, for each function and string node

(ni), we identify all dependent functions Sf and add the
edges in DG accordingly.

2) Minimum Distance Computation (lines 7–9): Each con-
text feature is taken as a starting point, and Dijkstra’s
algorithm [31] is employed to compute the minimum
distances between features and all reachable functions,
with the results stored in D.

3) Context Generation (lines 10–12): For each function,
its context is generated by querying the corresponding
distances between the function and features from D.

2) Context-Content Fusion: The context-content fusion
combines the strengths of both content and context information
to produce a unified similarity score for BCSD. To achieve
that, the content similarity scontent is first computed by gener-
ating function embeddings using an existing BCSD tool (e.g.,
HermesSim). Then, the context similarity between functions
f1 and f2 is calculated using the following equation.

s = max{ 1

|N ′|
∑
n∈N ′

[1−F(C(f1, n), C(f2, n))], 0} (5)

F =


|C(f1,n)−C(f2,n)|

max[C(f1,n),C(f2,n)] if C(f1, n) ̸=∞∧ C(f2, n) ̸=∞
1 + 1

C(f1,n) if C(f1, n) ̸=∞∧ C(f2, n) =∞
1 + 1

C(f2,n) if C(f1, n) =∞∧ C(f2, n) ̸=∞
(6)

Here, N ′ denotes the union set of feature nodes associated
with the two functions. C(f1) and C(f2) represent the function
contexts of f1 and f2, respectively. C(f, n) indicates the dis-
tance between function f and the feature node n. Ultimately,
we fuse the context and content similarities with the equation:

sfused = α · scontent + (1− α) · scontext (7)

where α ∈ [0, 1] is a fusion weight hyperparameter that
balances the contributions of content and context similarities.

B. LLM Verification

LLM verification focuses on resolving the remaining candi-
date functions from the retrieval stage. Leveraging the power-
ful code analysis capabilities of LLMs, candidate functions are
classified as positive or negative by feeding paired query and
candidate pseudocode snippets into the LLM using carefully
designed prompts. To reduce variability caused by different
instruction sets across architectures, we use decompiled pseu-
docode instead of raw binaries as input for verification. A
thorough evaluation of LLM selection, prompt design, and
configuration settings is presented in Section IV-A.

IV. EVALUATION

Co2FuLL comprises two stages: candidate retrieval and
LLM verification. Accordingly, we evaluate the performance
of each stage, as well as the overall effectiveness on the BCSD
task, by addressing the following research questions.
• RQ1. How effective is the function context in enhancing

the retrieval result of existing BCSD approaches? To what
extent does each component in context impact the overall
contribution (i.e., Ablation study)?

• RQ2. How do various prompting techniques and LLM set-
tings affect the accuracy, efficiency, and associated financial
expenditure of LLMs?

• RQ3. Can the explanations generated by LLMs assist in the
manual verification process? Are the explanations offered
by LLMs reasonable?

• RQ4. How effective is Co2FuLL in the BCSD task com-
pared to baselines?

A. Experimental Setup

Dataset. We evaluate our method and baselines on the public
BinKit dataset [28], which is more diverse than Dataset-
1 [32] and BinaryCorp [33], covering binaries from many
projects, architectures, compilers, and optimization levels. We
split BinKit into training and testing sets: 25 projects with
422,592 functions for training (used to retrain baseline BCSD
models and select fusion weight α) and 24 projects with
714,084 functions for testing. To evaluate BCSD robustness
under different compilation settings, we design three sub-
tasks: XA (cross-architecture and bitness), XC (cross-compiler
and optimization levels), and XM (cross all settings). Prior
work [3], [19], [20] generally assumes that the target function
is always present in the pool, which does not always hold in
real-world scenarios, as binaries may lack the queried function.
Therefore, for each sub-task, we randomly select 1,000 query
functions and sample 10,000 candidates per query from the
test set to form dataset D1, where only half the queries have
corresponding targets. In our experiments, HermesSim with
function context achieved the best performance, retrieving
98.2% of target functions within the Top-5. Thus, we select
the Top-5 candidates per query for LLM verification, forming
dataset D2. Dataset details are shown in Table I.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

20

40

60

80

100

M
R

R
 (%

)

GMN
Trex

Asteria
HermesSim

Fig. 6: The selection of fusion weight α.

Implementation. We use IDA Pro [34] to extract features,
dependencies, and code snippets, NetworkX [35] to generate
dependency graphs and implement Dijkstra’s algorithm, and
scikit-learn [36] with pandas [37] for similarity computation
and ranking. We construct the query and candidate function
pool (1,000 queries and 10,000 candidates per query) from
the training set, and tune the fusion weight α by varying it
from 0 to 1 in increments of 0.1, selecting the value that
yields the highest MRR for each BCSD method. As shown
in Figure 6, α = 0 and α = 1 denote performance based
entirely on context and the base model, respectively. As α
increases, the contribution of the content score to the fusion

TABLE I: Dataset Overview. “QF” and “CF” denote the
query and candidate functions, respectively. “Pos.” and “Neg.”
indicate positive and negative function pairs.

Name Sub-tasks # QF # CF # Pos. # Neg.

D1 XC, XA, XM 1,000 10,000 500 9,999.5k
D2 XM 1,000 5 491 4,510

score gradually grows. Stronger methods, such as HermesSim
and Asteria, achieve their highest MRR at α of 0.6, while
weaker methods like GMN and Trex achieve their best MRR
at low α of 0.3 and 0.2, respectively. The variation of α
across methods arises because stronger methods generate more
reliable content embeddings and can therefore place greater
emphasis on them. In contrast, weaker methods lack sufficient
capability in function embedding representation and must
therefore rely more heavily on context. All experiments were
conducted on a server with an Intel Xeon Gold 5218 CPU
@2.30GHz, 512 GB RAM, and dual Tesla V100 GPUs (32
GB each). LLMs are accessed via API services provided by
their respective vendors.
Baselines. We select five state-of-the-art methods as baselines:
• GMN [18]: A GNN variant that jointly reasons over a pair

of CFGs, shown to outperform other GNN-based methods
in prior work [32].

• Trex [6]: Uses a hierarchical Transformer to extract execu-
tion semantics from micro traces for embedding.

• Asteria [4]: Employs a Tree-LSTM to encode abstract
syntax trees (ASTs) derived from pseudocode. Its enhanced
variant, Asteria-Pro [3], further incorporates imports and
exports to filter and re-rank candidates on this basis.

• HermesSim [19]: Normalizes binary code by lifting it into
Toy IR and uses a semantics-oriented graph (SOG) to
generate function embeddings.
Methods such as jTrans [20] and Asm2Vec [5] are excluded

due to their lack of cross-architecture support. All baseline
methods were evaluated using their original implementations
and default configurations.
LLM Selection. We group LLMs into categories and select
representatives from each, yielding 7 LLMs in total as follows:
• General Models. These models are pre-trained on large text

corpora to understand and generate human-like language
across diverse topics. We select three series of advanced
LLMs: Qwen [38], DeepSeek [39], and GPT [40]. To
evaluate the impact of LLM size, we use three models from
Qwen-2.5: 7B, 14B, and 72B. For the other two series, we
use DeepSeek-V3 and GPT-4o.

• Task-specific Models. These models are designed to excel
at a single, well-defined task (e.g., code generation, code
fixing). Since our task is code-related, we include Qwen2.5-
Coder-14B [41], a Code-Specific LLM built upon Qwen2.5.

• Reasoning Models. These models are designed to solve com-
plex problems by mimicking human-like logical thinking,
using step-by-step deduction and causal inference. We use
DeepSeek-R1, an advanced reasoning model.

(a) Zero-Shot (d) CoT-Lite

You will be provided with two code
snippets. <Code A>, <Code B>. <Tips of
compilation and strip>. Please answer
the following guiding questions (GQs)
from two persepectives:
1. Syntactic-level: <GQ1>, <GQ2>, ...
2. Semantic-level: <GQ1>, <GQ2>, ...

Let's integrate the above information and
determine whether two code (<Code A>
and <Code B>) are compiled from the
same function.

<Answer> to GQs

You will be provided with two code
snippets. <Code A>, <Code B>. Please
answer the following guiding questions
(GQs). <GQ1>,<GQ2>, <GQ3>

What could be different and same when
using different compilation settings and
binary strip? What should we focus on
for the BCSD task?

<Answer>. <Explanation>

(e) CoT-Pro

(f) CoT-Self

<Answer> to GQs

<Answer>

Let's integrate the above information ...
are compiled from the same function.

<Answer>. <Explanation>

<Answer>. <Explanation>

You will be provided with two code
snippets. Please determine whether they
are compiled from the same function.
<Code A>, <Code B>.

<Answer>. <Explanation>

Examine your previous response and
assess any potential issues. If you find
none, simply return "no problem".

<Review problems>

Adjust your response in light of the
problems you discovered.

<New Answer>. <New Explanation>

You will be ... <Code A1>, <Code B1>

<Answer 1>. <Explanation 1>

You will be ... <Code An>, <Code Bn>

<Answer n>. <Explanation n>

You will be provided with two code
snippets. Please determine whether they
are compiled from the same function.
<Code A>, <Code B>.

<Answer>. <Explanation>

Let's integrate the above information ...
are compiled from the same function.

(b) Few-Shot

You will be provided with two code
snippets. Please determine whether they
are compiled from the same function.
<Code A>, <Code B>.

(c) Critique

<Answer>. <Explanation>

Fig. 7: Prompt techniques. The grey boxes represent user
inputs, while the green boxes display the LLM responses.

LLM Settings. We explore two major LLM settings.
• top_p (nucleus sampling) controls output diversity by lim-

iting next-word choices to the smallest set with a cumulative
probability above the threshold (e.g., 0.8 includes only the
top 80% most likely words).

• temperature regulates the randomness of the model’s
output. Lower values yield more deterministic and consistent
responses, whereas higher values introduce greater variabil-
ity, resulting in more diverse and inventive outputs.

Prompting Techniques. Inspired by prior works [23], [42], we
adopt four commonly used prompting techniques as follows:
• Zero-Shot [43] prompt instructs the model to perform a task

without providing examples or extra context, as in Figure 7a.
• Few-Shot [44] provides several input-output examples (typ-

ically 2–5) before the actual task to illustrate the expected
response, as demonstrated in Figure 7b.

• Critique [45] encourages LLMs to identify potential prob-
lems in their initial responses and refine their answers
accordingly, as shown in Figure 7c.

• Chain-of-Thought (CoT) [46] prompt adapts LLMs by in-

TABLE II: Results of the function retrieval experiment. ”Base”
and ”+Context” denote methods without and with context
similarity, respectively. Scores are reported as MRR (%).

Method XC XA XM

Base +Context Base +Context Base +Context

Trex 43.7 (↑71.8) 75.1 16.2 (↑301.4) 64.9 25.8 (↑176.2) 71.1
GMN 34.9 (↑99.2) 69.5 33.6 (↑117.6) 73.1 24.7 (↑185.6) 70.4

Asteria 55.1 (↑40.9) 77.7 81.5 (↑10.3) 89.9 52.2 (↑52.7) 79.6
HermesSim 80.6 (↑12.0) 90.3 90.1 (↑4.8) 94.4 74.7 (↑23.4) 92.2

Average 53.6 (↑45.8) 78.1 55.3 (↑45.6) 80.6 44.3 (↑76.8) 78.3

corporating intermediate reasoning steps, thereby guiding
the model toward more accurate and structured responses.
We reference [47] and propose three CoT variants. 1)
CoT-Lite: Pose guiding questions to the LLM, then use
both questions and responses as task context (Figure 7d).
2) CoT-Pro: Provide background on compilation settings
and binary stripping, with guiding questions at syntactic
and semantic levels (Figure 7e). 3) CoT-Self : Instead of
expert-crafted questions, instruct the LLM to independently
identify compilation effects, stripping impacts, and key task
points (Figure 7f).

0

2K

4K

6K

8K

0

15

30

45

60

GMN+C Trex+C Asteria+C
HermesSim+C

0

25

50

75

100

Va
lu

e
(%

)

(a) Thresholds (0.1, 0.3, 0.5, 0.7, 0.9)
Ncand Precision Recall

GMN+C Trex+C Asteria+C
HermesSim+C

0

25

50

75

100
(b) Top-K (1, 5, 10, 30, 50)

Fig. 9: Impact of different thresholds and Top-K for methods
with context. ”+C” is short for ”+Context”. The bar charts are
plotted against the right y-axis.

B. RQ1: Enhancement of Context for Function Retrieval

Following prior work [3], [19], we employ Mean Reciprocal
Rank (MRR = 1

|Q|
∑

q∈Q
1
rq

) to show the impact of context
enhancement for function retrieval, where Q is the set of
queries and rq is the rank of the targets to query q.

Table II presents the function retrieval results of the original
BCSD approaches and their enhanced versions incorporating
the function context across XC, XA, and XM sub-tasks. On
the one hand, the integration of context boosts the performance
of baselines substantially across all methods and sub-tasks.
On average, the four BCSD methods augmented with context
surpass their original version (Base) by 45.7%, 45.6%, and
76.4% across the three sub-tasks, respectively.

On the other hand, the improvement of scores varies across
different methods, owing to their capabilities. For example,
GMN and Trex exhibit remarkable gains of 185.6% and
176.2%, respectively, when enriched with context in the XM
task. In contrast, methods such as Asteria and Hermessim
show relatively modest increases in MRR for the XM task,
with improvements of 52.7% and 23.4%, respectively.

Zero-Shot Critique CoT-Lite CoT-Pro CoT-Self Few-Shot
Prompt

0

50

100
Va

lu
e

(%
)

37
.1

53
.4

80
.8

85
.5

84
.8

87
.9

29
.6

47
.3

86
.1

82
.5

84
.8

75
.1

45
.0

77
.9

80
.7

88
.8

74
.9

85
.5

71
.5

79
.2

82
.8

83
.0

81
.6

89
.9

40
.9

76
.2

87
.3

90
.9

86
.1

93
.7

72
.6

89
.3

89
.6

91
.6

82
.5

92
.5

Qwen-7B Qwen-Coder-14B Qwen-14B Qwen-72B DeepSeek-R1 DeepSeek-V3 Precision Recall

1.0/0.5 0.5/0.5 0.5/1.0 1.0/1.0 1.0/0.0
LLM settings (top_p/temperature)

0

50

100

73
.5

87
.4

89
.2

90
.9

82
.0

93
.2

72
.8

89
.7

89
.7

91
.6

82
.4

93
.0

72
.8

89
.7

89
.7

91
.5

82
.1

93
.4

72
.7

80
.8

89
.0

91
.3

82
.6

93
.3

72
.6

89
.3

89
.6

91
.6

82
.5

92
.5

Fig. 8: The impact of LLM verification across varying prompts and LLM settings. The bar charts denote the F2 score.

To evaluate the tradeoff between two filtering strategies, we
vary the threshold from 0 to 1 and the Top-K value from
1 to 50, recording precision, recall, and Ncand (the number
of candidates for LLM verification per query after filtering)
as evaluation metrics. The goal of filtering is to reduce the
number of candidates while preserving the majority of target
functions. As shown in Figure 9, increasing Top-K or lowering
the threshold improves the recall but also raises Ncand (i.e.,
lower precision), resulting in greater time and financial over-
head for subsequent LLM verification. Top-K-based filtering
outperforms threshold-based filtering, as the latter often yields
more than 100 candidates per query to achieve a high recall
comparable to that of the former. Specifically, with Top-K set
to 5, HermesSim+C attains 98.2% recall while limiting the
candidate set to just 5 per query, thereby striking an optimal
balance between recall and computational cost.

Ablation Study. To showcase the contributions of each
component in the function context, we established five distinct
configurations for the ablation study:
• Base: The base methods without any context.
• Base+Context (direct): Methods enhanced with context

composed of features directly relied upon by the functions.
• Base+Context (imp): Methods enhanced with context com-

posed solely of the imports.
• Base+Context (str): Methods enhanced with context com-

posed solely of the strings.
• Base+Context: Methods enhanced with complete context.

GMN Trex Asteria HermesSim0

20

40

60

80

100

M
R

R
 (%

)

24
.7

25
.8

52
.2

74
.7

57
.5

58
.1

72
.6

87
.0

60
.1

58
.8

69
.9

87
.0

60
.7

60
.3

73
.8

87
.1

70
.4

71
.1

79
.6

92
.2

Base
Base+Context (direct)
Base+Context (imp)

Base+Context (str)
Base+Context

Fig. 10: Ablation study of the function context.

Figure 10 presents the results of the ablation study. As
illustrated, methods incorporating the complete context consis-
tently outperform the other four configurations, with average
improvements of 76.8% over Base, 13.9% over Base+Context
(direct), 13.4% over Base+Context (imp), and 11.2% over
Base+Context (str), respectively. The superior performance
of the complete context stems from its ability to leverage

comprehensive information, encompassing all dependencies
and features associated with the target function. In contrast,
alternative configurations, such as relying solely on strings,
imports, and direct dependencies, inevitably result in a perfor-
mance loss.

Answer to RQ1. Context integration boosts MRR for
function retrieval by 55.9% across the sub-tasks on average,
while removing any component in context drops it by
11.2–13.9%, highlighting their importance.

C. RQ2: Impact of Prompt and LLM Settings on LLM

Figure 8 shows the precision, recall, and F2 score for various
prompt techniques and LLM settings across different LLMs
on D2. Owing to the significantly higher cost of GPT-4o, it
is excluded from the prompt and settings experiments. The
results reveal the following findings.

Finding 1. The size of LLMs significantly impacts their
accuracy and sensitivity to prompt engineering, with this
influence progressively diminishing as model scale increases.
Larger LLMs tend to yield higher accuracy than smaller
LLMs. Using Zero-Shot, the F2 scores of Qwen-7B, Qwen-
14B, and Qwen-72B are 37.1%, 80.8%, and 85.5% respec-
tively. The corresponding gain in F2 decreases from 117.8%
(Qwen-14B over Qwen-7B) to 5.8% (Qwen-72B over Qwen-
14B). When shifting from Zero-Shot to Few-Shot, the F2 score
of Qwen-7B rises by 95.7% (37.1% to 72.6%), whereas Qwen-
72B shows only a modest gain of 7.1% (85.5% to 91.6%).

Finding 2. Prompting techniques exert markedly different
levels of influence across LLMs. Few-Shot is the most reli-
able, consistently achieving high accuracy across all models.
Except for Qwen-72B, CoT-Pro outperforms CoT-Lite across
all LLMs, showing that detailed guidance and refined task
representation provide clear benefits. CoT-Self suits high-
capacity models like DeepSeek-V3 (R1) but performs worse
on smaller models (e.g., Qwen-7B) than other CoT variants.
Critique performs worst, even below Zero-Shot, as it often
mislabels correct answers despite occasionally fixing errors.

Finding 3. General LLMs outperform task-specific and
reasoning models. Qwen-Coder-14B and DeepSeek-R1 gen-
erally excel in specialized tasks such as code generation and
mathematical analysis. Yet, they underperform their general-
purpose counterparts, Qwen-14B and DeepSeek-V3, by 33.9%
and 3.5% under Zero-Shot, respectively.

Zero-Shot Critique CoT-Lite CoT-Pro CoT-Self Few-Shot
0

10

20

M
on

ey
 c

os
t (

$)
Qwen-7B
Qwen-14B

Qwen-72B
DeepSeek-R1

DeepSeek-V3
Time cost (h)

0

50

100

Ti
m

e
co

st
 (h

)

Fig. 11: The time and money cost across varying prompts and
LLMs on D2. The bar charts denote the money costs.

Finding 4. LLM settings have minimal impact on accuracy.
Except for Qwen-Coder-14B, which experiences a 9.5% de-
cline in F2 score when shifting from 1.0/0.0 to 1.0/1.0,
other models show differences under 1% across LLM settings.
Time and Money Cost. We report the time and money costs
of LLMs under different prompting techniques in Figure 11.
Zero-Shot, Critique, and Few-Shot incur lower latency than
CoT, which is slowed by intermediate reasoning. Few-Shot is
generally the most expensive due to example overhead, except
for DeepSeek-R1, which shows the highest cost and latency
overall because of its lengthy reasoning output.

Answer to RQ2. Advanced prompts greatly enhance LLM
accuracy, especially for smaller models. Conversely, LLM
settings present minimal impact.

D. RQ3: Utility and Reasonability of LLM Explanations

For the utility and reasonability studies of LLM explana-
tions, we randomly selected 50 samples (25 positives and
25 negatives) from D2 and invited 6 participants with over
4 years of reverse engineering and BCSD experience. They
were evenly divided into two groups (G1 and G2), with the
utility study conducted first to ensure G1 was not exposed to
explanations before the reasonability study.

Human
0

30

60
46 49

(a) Utility

Qwen-7B

Qwen-Coder-14B

Qwen-14B

Qwen-72B
Gpt-4o

DeepSeek-R1

DeepSeek-V3
0

30

60

36 38 35
45 42 44 44 46 44 48 47 47 44 48

(b) Reasonability

CA (G1)
CA (G2)

CA (Zero-Shot)
CA (Few-Shot)

Time cost
RE

0

15

30

0

30

60

Fig. 12: Results of the utility and reasonability studies for
LLM explanations. “# CA” and “# RE” denote the number of
correct answers and reasonable explanations.

Utility Study. This study aims to illustrate the utility of
explanations in aiding manual verification. For the 50 sam-
ples, G1 receives only the code snippets, whereas G2 is

provided with both the code snippets and the corresponding
explanations generated by DeepSeek-V3 using the Few-Shot
prompt. We ask the participants to classify the samples and
record the analysis time cost. As observed in Figure 12a, G2
demonstrates higher accuracy in classifying the samples and
reduces analysis time by 34.9% compared to G1. With the
support of LLM-generated explanations, participants in G2
can swiftly discern the differences (or similarities) between
the two code snippets and validate the findings by focusing on
the corresponding code segments. In contrast, participants in
G1 must analyze the snippets from scratch, a time-consuming
process that risks overlooking critical details. Furthermore,
LLMs often summarize the functionalities of the code snippets,
aiding participants in rapidly grasping their intended purposes.

int f2(int *a1, int a2){
 int v6 = 0;
 while (a2 <= 4){
 v6 = sub_27F8(a1+296, a2);
 a2++;}
 return v6;}

double f1(int *a1, int a2){
 int v4, v5;
 v5 = a1 + 296;
 for (;a2 <= 4; a2++){
 v4 = sub_205D(v5, a2);
 }
 return v4;}

f1 and f2 differ in variables (v4 vs v8), function
names (sub_205D vs sub_27F8), and return
types (int vs double), indicating they are from
the different source code. (FN)

(a) f1

(d) LLM response of syntactic error

int f3(int *a1, int a2, int a3){
 int v8;
 if (!a3)
 return -2;
 while (a2 <=5){
 v8 = sub_28FD(a1+16, a2) ;
 a2++;}
 return v8;}

Both f2 and f3 check list size and retrieve an
element through a loop using similar functions.
Thus, they are from the same source code. (FP)

(b) f2 (c) f3

(e) LLM response of semantic error

Fig. 13: LLM failure cases. Figures (a) to (c) present the code
of three functions, where f1 and f2 are compiled from the
same code, while f3 originates from a different source. Figures
(d) to (f) display the corresponding LLM responses. Syntactic
differences between f1 and f2 are highlighted in red, whereas
semantic differences between f2 and f3 are marked in blue.

Reasonability Study. This study evaluates the reasonability of
explanations. We select two prompting techniques, Zero-Shot
and Few-Shot, across 7 LLMs, resulting in 700 explanations
to be examined. For 50 samples, code snippets together with
their explanations are presented to G1, and participants are
asked to determine whether each explanation is reasonable.

As observed, LLMs with greater capacity demonstrate su-
perior classification accuracy and produce more coherent,
reasoned explanations under identical prompts. For instance,
under the Zero-Shot prompt, Qwen-7B correctly classifies
36 samples, of which only 27 are considered reasonable. In
contrast, Qwen-14B accurately identifies 42 samples, with 41
accompanied by reasonable explanations. Moreover, Few-Shot
prompt significantly enhances the reasonability of explana-
tions generated by LLMs, thereby improving overall accuracy.
Leveraging Few-Shot, Qwen-7B successfully addresses short-
comings observed under the Zero-Shot prompt, where com-
pilation settings and binary stripping-related variations were
often misinterpreted as functional differences. Notably, even
advanced models such as GPT-4o and DeepSeek-V3 benefit
from Few-Shot prompting, with the number of reasonable
explanations rising from 44 to 48.

Failure Cases Analysis. We categorize the common failure
cases (92 out of 700 test cases in RQ3) and present represen-

TABLE III: Results of BCSD methods and Co2FuLL with different LLMs on D1. Nv = TP + FP denotes the number of
functions requiring human verification (i.e., functions reported as positives), and FG is short for feature generation. Time is
measured using a single process. T and K denote the threshold and Top-K values that yield the highest F2 score, with the
corresponding metrics reported under these settings.

Method LLM Metric (%) Time (h) Money ($)
T P@T R@T F2@T Nv K P@K R@K F2@K Nv FG Matching Total

GMN

N/A

0.95 0.2 67.0 0.8 196,075 1 8.9 17.8 14.8 1,003 153.7 0.2 153.9

N/A

Trex 0.95 14.1 9.2 9.9 326 1 10.6 21.2 17.7 1,002 163.2 0.2 163.4
Asteria 0.95 26.1 37.8 34.7 725 1 24.9 50.4 41.8 1,011 2242.8 0.2 2243.0

Asteria-Pro 0.95 0.7 48.0 0.8 33,278 1 30.5 60.0 50.3 984 393.5 0.2 393.7
HermesSim 0.70 26.3 67.4 51.4 1,279 1 33.2 66.4 55.3 1,000 199.2 0.2 199.4

HermesSim+Context 0.80 48.4 61.0 58.0 630 1 44.0 88.0 73.3 1,000 199.9 0.3 200.2

Co2FuLL
(HermesSim+Context)

Qwen-7B

N/A 5

91.4 67.8 71.5 371

199.9

3.3 203.3 1.5
Qwen-Coder-14B 86.7 88.4 88.1 510 4.7 204.6 6.4

Qwen-14B 83.0 89.8 88.4 541 4.8 204.7 3.2
Qwen-72B 84.7 91.8 90.3 542 5.7 205.6 12.8

GPT-4o 82.3 90.4 88.7 549 5.9 205.8 55.3
DeepSeek-R1 50.6 96.2 81.5 951 48.8 248.7 19.6
DeepSeek-V3 80.5 94.4 91.2 586 6.3 206.2 6.6

* Nv exceeds 1,000 due to tied rankings in Top-K results, while for Asteria-Pro, it’s below 1,000 as some queries yield no candidates owing to its filtering module.

tative examples for each category as follows:
• Syntactic error (47 cases): Due to binary stripping and

the limitation of decompilation, the code exhibits syntactic
variations, such as differing variable and function names. In
such cases, these differences are misinterpreted by LLMs as
functional mismatches, resulting in false negatives. This type
of error occurs predominantly with smaller LLM models,
such as Qwen-7B, and is seldom observed with larger
models such as Qwen-72B and DeepSeek-V3. Figure 13d
illustrates a failure case: the LLM interprets differences such
as variable names and function names as substantive code
differences, resulting in a false negative.

• Semantic error (45 cases): LLMs excel at capturing the
overall semantics of functions, yet they may overlook subtle
differences (e.g., loop bounds or numerical constants), es-
pecially when the structure and logic of two pieces of code
appear highly similar. Moreover, code optimizations such
as function inlining may partly alter a function’s semantics,
leading to deviations in the LLMs’ interpretation. Figure 13e
illustrates a failure case: while the LLM correctly identifies
the core logic shared by the two code snippets, it overlooks
subtle differences, such as the constants used in addition,
the return values, and the check on a1 in f4 that is absent
from f3), resulting in a false positive.

Answer to RQ3. The LLM-generated explanations facili-
tate manual verification, which improves both accuracy and
time cost.

E. RQ4: Effectiveness of Co2FuLL in the BCSD task
Table III shows results of baselines and Co2FuLL with

different LLMs on D1. To reduce output randomness and
ensure fair comparison, we use the Few-Shot prompt with
top_p=1.0 and temperature=0. We then vary the sim-
ilarity threshold (0–1) and Top-K (1–50), reporting the best
metrics. The first two columns list the method and LLM, while
the others present metrics, time, and cost for each approach.
Metric Analysis. All baselines yield low F2 scores even with
optimal thresholds and Top-K values. In contrast, Co2FuLL,

built on HermesSim with function context, achieves a 73.3%
F2, 32.5% higher than HermesSim. Using a high-capacity
LLM (DeepSeek-V3) to verify the Top-5 candidates from
HermesSim+Context further improves performance to 80.5%
precision, 94.4% recall, and 91.2% F2, surpassing HermesSim
by 64.9%. These results show the importance of context and
LLMs in BCSD. With LLM support, manual verification (Nv)
drops significantly, for instance, Co2FuLL with HermesSim
and DeepSeek-V3 reduces Nv from 1,000 to 586 (41.4%)
compared to HermesSim alone.
Scalability Analysis. Benefiting from candidate retrieval, the
LLM needs only to verify a small set of candidates (Top-
5), incurring minimal additional time and financial cost. As
shown in Table III, the total runtime of Co2FuLL with context
and DeepSeek-V3 on the large-scale dataset D1 (10 million
function pairs) is 206.2 hours, merely 6.8 hours (3.4%) longer
than HermesSim’s 199.4 hours. The additional financial cost is
only $6.6, making the approach both economical and practical.
Since the LLM is only used to analyze the Top-5 candidates,
Co2FuLL’s cost remains constant regardless of the size of
the function pool. Thus, Co2FuLL exhibits strong scalability
and is highly suitable for large-scale BCSD tasks.

Answer to RQ4. Co2FuLL achieves both high precision
and recall in the BCSD task, especially when using model
HermesSim and LLM DeepSeek-V3.

V. DISCUSSION

A. Takeaways

LLM and Prompt Selection. Large-scale general models are
generally better for BCSD but require higher financial and
computational resources. Thus, participants should weigh ac-
curacy against cost. Beyond DeepSeek-V3, Qwen-14B offers
strong accuracy at very low cost, making it attractive for small
companies. Few-shot prompting proves to be the most practical
strategy, balancing efficiency and accuracy across LLMs. For
Chain-of-Thought (CoT), the choice should align with model

capacity: smaller models (e.g., Qwen-7B) benefit from CoT-
Pro’s explicit reasoning guidance, while larger reasoning-
optimized models (e.g., DeepSeek-R1) perform best with CoT-
Self, autonomously generating reasoning steps to exploit their
advanced capabilities.
Core Idea Migration. For computationally intensive tasks
such as BCSD, practitioners must carefully balance efficiency,
accuracy, and financial cost when employing LLMs. While
LLMs offer powerful capabilities in code understanding and
reasoning, they require substantially more resources and time
compared to lighter models like GNNs. The core idea of
Co2FuLL, delegating the majority of easily identifiable cases
to lightweight models or contextual features while using LLMs
for the minority of difficult cases, can be extended to similar
tasks, thereby enhancing both efficiency and accuracy with
minimal additional cost.
Future Work. LLMs excel at analyzing code and understand-
ing its purpose and core logic. Yet, as our failure case analysis
reveals, they may overlook subtle distinctions when the overall
code logic appears similar. A promising next step, therefore,
is to leverage LLMs for high-level logic analysis while inte-
grating external tools, such as symbolic execution [48], [49]
and the SMT Solver Z3 [50] for formal verification, thereby
capturing the subtle differences that LLMs may overlook.

B. Threats to Validity and Limitations

While Co2FuLL shows promising results, we acknowledge
several potential threats to validity and inherent limitations: (1)
LLM responses may vary for identical inputs due to inherent
randomness. To mitigate this, we first evaluated different LLM
settings and observed that the impact on classification results
was negligible. We then also fixed temperature at 0 to
ensure consistent outputs. (2) We employ IDA Pro [34] to con-
struct dependency graphs and extract code snippets. However,
in stripped binaries, IDA may fail to accurately detect function
boundaries. In future work, we plan to integrate additional
binary analysis tools (e.g., Ghidra [51]) or adopt function
identification techniques [52]–[54] to achieve more precise
function detection and thereby overcome this limitation. (3)
Binary obfuscation transforms code into harder-to-analyze
forms while preserving functionality, using techniques such as
control-flow flattening [55], opaque predicates [56], and string
encryption [57], which will impact the effectiveness of both
context and LLM. Accordingly, several works, such as SAT-
URN [58], AutoSimpler [59], and FLOSS [60], have proposed
effective techniques for recovering obfuscated information in
binaries, which can be employed as a preprocessing step when
applying Co2FuLL to obfuscated binaries.

VI. RELATED WORK

We divide the existing BCSD methods based on the features
they use into two categories:
Text-Based. These approaches treat binary code as textual
data and employ natural language processing (NLP) models
to derive function semantics. Both Asm2Vec and Trex extract
execution traces from binaries as input; the former utilizes the

PV-DM model [61], whereas the latter employs a hierarchical
Transformer architecture to generate embeddings, enabling
cross-architecture detection and achieving higher accuracy
owing to the capabilities of the stronger model. jTrans seg-
ments assembly code based on jump instructions and embeds
the resulting sequences using the BERT architecture [62]. It
introduces two novel pre-training tasks tailored for BCSD
to capture function semantics, followed by fine-tuning with
supervised learning, thereby enhancing BCSD performance.
Graph-Based. These methods primarily leverage graph neural
networks (GNNs) and graph-structured representations (e.g.,
CFGs) to generate function embeddings. Gemini is among the
earliest works to adopt the Struct2Vec model [63] for function
embedding, surpassing Genius, a prior method using the same
features without deep learning, and thereby demonstrating the
effectiveness of deep learning techniques in advancing BCSD.
GMN employs a variant of GNN that jointly reasons over pairs
of CFGs, achieving superior performance compared to Gemini.
Asteria observed that abstract syntax trees (ASTs) derived
from pseudocode decompiled by binary analysis tools (e.g.,
IDA Pro) exhibit greater robustness across architectures than
CFGs, and utilized a Tree-LSTM [64] to encode them, yielding
improved performance over GMN. HermesSim, the current
state-of-the-art, emphasizes that prior works neglect critical
code relationships, data (def-use), effect (execution order), and
function conventions that remain robust across compilation
settings. Accordingly, HermesSim normalizes binary code into
Toy IR and constructs a semantics-oriented graph (SOG)
based on these relationships, leveraging a Gated Graph Neural
Network (GGNN) [65] to generate function embeddings, and
outperforms all existing approaches.
Summarization. On the one hand, most existing methods
primarily focus on the features of function content while either
neglecting or failing to fully leverage the potential power of
function context. On the other hand, they only employ small-
scale deep learning networks to capture the variation patterns
of functions under different compilation settings, resulting in
inferior semantic understanding compared to LLMs.

VII. CONCLUSION

This work proposes a novel BCSD framework, Co2FuLL,
which integrates both content and contextual information of
binary functions with LLM to advance existing BCSD meth-
ods. By systematically exploring diverse prompting strategies
and LLM settings, Co2FuLL identifies the optimal setup for
effective LLM utilization. The results show that Co2FuLL
yields a precision of 80.5% and a recall of 94.4% on a large-
scale BCSD, surpassing baselines by a significant margin.

VIII. ACKNOWLEDGMENT

We appreciate all the anonymous reviewers for their in-
valuable comments. This work is supported by National
Natural Science Foundation of China (Grant No.92467201,
No.62202462, No.62472302). Any opinions, findings and con-
clusions in this paper are those of the authors and do not
necessarily reflect the views of the funding agencies.

REFERENCES

[1] Y. David and E. Yahav, “Tracelet-based code search in executables,”
Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2014.

[2] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural network-
based graph embedding for cross-platform binary code similarity detec-
tion,” in CCS, 2017, pp. 363–376.

[3] S. Yang, C. Dong, Y. Xiao, Y. Cheng, Z. Shi, Z. Li, and L. Sun, “Asteria-
pro: Enhancing deep learning-based binary code similarity detection
by incorporating domain knowledge,” ACM Transactions on Software
Engineering and Methodology, vol. 33, pp. 1 – 40, 2023. [Online].
Available: https://api.semanticscholar.org/CorpusID:255372539

[4] S. Yang, “Asteria: Deep learning-based for cross-platform binary code
similarity detection,” in DSN, 2021, p. 13.

[5] L. Massarelli, G. A. Di Luna, F. Petroni, L. Querzoni, and R. Baldoni,
“Safe: Self-attentive function embeddings for binary similarity,” in
DIMVA, 2019.

[6] K. Pei, Z. Xuan, J. Yang, S. S. Jana, and B. Ray, “Trex: Learning
execution semantics from micro-traces for binary similarity,” ArXiv, vol.
abs/2012.08680, 2020.

[7] J. Gao, X. Yang, Y. Fu, Y. Jiang, and J. Sun, “Vulseeker: A semantic
learning based vulnerability seeker for cross-platform binary,” in ASE,
2018, pp. 896–899.

[8] C. Krügel, E. Kirda, D. Mutz, W. K. Robertson, and G. Vigna, “Poly-
morphic worm detection using structural information of executables,”
in International Symposium on Recent Advances in Intrusion Detection,
2005.

[9] D. Bruschi, L. Martignoni, and M. Monga, “Code normalization for self-
mutating malware,” IEEE Security & Privacy, vol. 5, no. 2, pp. 46–54,
2007.

[10] S. Cesare, Y. Xiang, and W. Zhou, “Control flow-based malware variant-
detection,” IEEE Transactions on Dependable and Secure Computing,
vol. 11, no. 4, pp. 307–317, 2013.

[11] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with applications
to software plagiarism detection,” in Proceedings of the 22nd ACM SIG-
SOFT international symposium on foundations of software engineering,
2014, pp. 389–400.

[12] W. Tang, Y. Wang, H. Zhang, S. Han, P. Luo, and D. Zhang, “Libdb:
An effective and efficient framework for detecting third-party libraries
in binaries,” in MSR, 2022.

[13] C. Yang, Z. Xu, H. Chen, Y. Liu, X. Gong, and B. Liu, “Modx:
Binary level partially imported third-party library detection via
program modularization and semantic matching,” 2022 IEEE/ACM
44th International Conference on Software Engineering (ICSE), pp.
1393–1405, 2022. [Online]. Available: https://api.semanticscholar.org/
CorpusID:248259104

[14] C. Dong, S. Li, S. Yang, Y. Xiao, Y. Wang, H. Li, Z. Li, and L. Sun,
“Libvdiff: Library version difference guided oss version identification
in binaries,” 2024 IEEE/ACM 46th International Conference on
Software Engineering (ICSE), pp. 791–802, 2024. [Online]. Available:
https://api.semanticscholar.org/CorpusID:267523849

[15] Y. Xu, Z. Xu, B. Chen, F. Song, Y. Liu, and T. Liu, “Patch
based vulnerability matching for binary programs,” Proceedings of the
29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2020. [Online]. Available: https://api.semanticscholar.org/
CorpusID:220497409

[16] C. Dong, J. Guo, S. Yang, Y. Xiao, Y. Li, H. Li, Z. Li, and L. Sun,
“Plocator: Fine-grained patch presence test in binaries via patch code
localization,” ACM Transactions on Software Engineering and Method-
ology, 2025.

[17] A. Sæbjørnsen, J. Willcock, T. Panas, D. J. Quinlan, and Z. Su,
“Detecting code clones in binary executables,” in International
Symposium on Software Testing and Analysis, 2009. [Online].
Available: https://api.semanticscholar.org/CorpusID:6480274

[18] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, “Graph matching
networks for learning the similarity of graph structured objects,”
in International Conference on Machine Learning, 2019. [Online].
Available: https://api.semanticscholar.org/CorpusID:139102215

[19] H. He, X. Lin, Z. Weng, R. Zhao, S. Gan, L. Chen, Y. Ji, J. Wang,
and Z. Xue, “Code is not natural language: Unlock the power
of semantics-oriented graph representation for binary code similarity

detection,” in USENIX Security Symposium, 2024. [Online]. Available:
https://api.semanticscholar.org/CorpusID:271325358

[20] H. Wang, W. Qu, G. Katz, W. Zhu, Z. Gao, H. Qiu, J. Zhuge, and
C. Zhang, “jtrans: jump-aware transformer for binary code similarity
detection,” Proceedings of the 31st ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, 2022.

[21] X. Du, M. Liu, K. Wang, H. Wang, J. Liu, Y. Chen, J. Feng, C. Sha,
X. Peng, and Y. Lou, “Evaluating large language models in class-level
code generation,” 2024 IEEE/ACM 46th International Conference on
Software Engineering (ICSE), pp. 982–994, 2024. [Online]. Available:
https://api.semanticscholar.org/CorpusID:269128474

[22] C. Wang, J. Zhang, Y. Feng, T. Li, W. Sun, Y. Liu, and X. Peng,
“Teaching code llms to use autocompletion tools in repository-level
code generation,” ArXiv, vol. abs/2401.06391, 2024. [Online]. Available:
https://api.semanticscholar.org/CorpusID:266977002

[23] W. Sun, Y. Miao, Y. Li, H. Zhang, C. Fang, Y. Liu, G. Deng,
Y. Liu, and Z. Chen, “Source code summarization in the era of
large language models,” ArXiv, vol. abs/2407.07959, 2024. [Online].
Available: https://api.semanticscholar.org/CorpusID:271097661

[24] R. Haldar and J. Hockenmaier, “Analyzing the performance of large
language models on code summarization,” ArXiv, vol. abs/2404.08018,
2024. [Online]. Available: https://api.semanticscholar.org/CorpusID:
269137593

[25] Q. Zhang, T. Zhang, J. Zhai, C. Fang, B.-C. Yu, W. Sun,
and Z. Chen, “A critical review of large language model on
software engineering: An example from chatgpt and automated
program repair,” ArXiv, vol. abs/2310.08879, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:264127977

[26] Q. Zhang, C. Fang, Y. Xie, Y. Ma, W. Sun, Y. Yang, and Z. Chen, “A
systematic literature review on large language models for automated
program repair,” ArXiv, vol. abs/2405.01466, 2024. [Online]. Available:
https://api.semanticscholar.org/CorpusID:269502453

[27] “The official code and dataset of co2full.” https://github.com/GentleCP/
Co2FuLL-public, 2025.

[28] D. Kim, E. Kim, S. K. Cha, S. Son, and Y. Kim, “Revisiting binary
code similarity analysis using interpretable feature engineering and
lessons learned,” IEEE Transactions on Software Engineering, vol. 49,
pp. 1661–1682, 2020. [Online]. Available: https://api.semanticscholar.
org/CorpusID:227127587

[29] “The gnu scientific library (gsl) is a numerical library for c and c++
programmers. it is free software under the gnu general public license.”
https://www.gnu.org/software/gsl/, 2025.

[30] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. X. Song,
“Neural network-based graph embedding for cross-platform binary
code similarity detection,” Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017. [Online].
Available: https://api.semanticscholar.org/CorpusID:24381176

[31] “Dijkstra’s algorithm,” https://en.wikipedia.org/wiki/Dijkstra’s
algorithm, 2023.

[32] A. Marcelli, M. Graziano, and M. Mansouri, “How machine learning is
solving the binary function similarity problem,” 2022.

[33] “Binarycorp is built for binary similarity detection based on the
archlinux official repositories and arch user repository,” https://
paperswithcode.com/dataset/binarycorp, 2022.

[34] “The best-of-breed binary code analysis tool, an indispensable item in
the toolbox of world-class software analysts, reverse engineers, malware
analyst and cybersecurity professionals.” https://hex-rays.com/ida-pro/,
2022.

[35] “Networkx is a python package for the creation, manipulation, and study
of the structure, dynamics, and functions of complex networks.” https:
//networkx.org/, 2025.

[36] “Simple and efficient tools for predictive data analysis.” https://
scikit-learn.org/stable/, 2025.

[37] “Pandas is a fast, powerful, flexible and easy to use open source data
analysis and manipulation tool, built on top of the python programming
language.” https://pandas.pydata.org/, 2025.

[38] “A family of large language models developed by alibaba cloud.” https:
//chat.qwen.ai/, 2025.

[39] “A chinese artificial intelligence company that develops large language
models (llms).” https://www.deepseek.com/, 2025.

[40] “A multimodal large language model trained and created by openai and
the fourth in its series of gpt foundation models.” https://chatgpt.com/,
2025.

https://api.semanticscholar.org/CorpusID:255372539
https://api.semanticscholar.org/CorpusID:248259104
https://api.semanticscholar.org/CorpusID:248259104
https://api.semanticscholar.org/CorpusID:267523849
https://api.semanticscholar.org/CorpusID:220497409
https://api.semanticscholar.org/CorpusID:220497409
https://api.semanticscholar.org/CorpusID:6480274
https://api.semanticscholar.org/CorpusID:139102215
https://api.semanticscholar.org/CorpusID:271325358
https://api.semanticscholar.org/CorpusID:269128474
https://api.semanticscholar.org/CorpusID:266977002
https://api.semanticscholar.org/CorpusID:271097661
https://api.semanticscholar.org/CorpusID:269137593
https://api.semanticscholar.org/CorpusID:269137593
https://api.semanticscholar.org/CorpusID:264127977
https://api.semanticscholar.org/CorpusID:269502453
https://github.com/GentleCP/Co2FuLL-public
https://github.com/GentleCP/Co2FuLL-public
https://api.semanticscholar.org/CorpusID:227127587
https://api.semanticscholar.org/CorpusID:227127587
https://www.gnu.org/software/gsl/
https://api.semanticscholar.org/CorpusID:24381176
https://en.wikipedia.org/wiki/Dijkstra's_algorithm
https://en.wikipedia.org/wiki/Dijkstra's_algorithm
https://paperswithcode.com/dataset/binarycorp
https://paperswithcode.com/dataset/binarycorp
https://hex-rays.com/ida-pro/
https://networkx.org/
https://networkx.org/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://pandas.pydata.org/
https://chat.qwen.ai/
https://chat.qwen.ai/
https://www.deepseek.com/
https://chatgpt.com/

[41] “An advanced code-specialized large language model (llm) developed
by alibaba’s qwen team, designed to excel in programming tasks such
as code generation, debugging, completion, and explanation.” https://
github.com/QwenLM/Qwen2.5-Coder, 2025.

[42] P. Sahoo, A. K. Singh, S. Saha, V. Jain, S. S. Mondal, and A. Chadha,
“A systematic survey of prompt engineering in large language
models: Techniques and applications,” ArXiv, vol. abs/2402.07927,
2024. [Online]. Available: https://api.semanticscholar.org/CorpusID:
267636769

[43] “Prompt engineering skills help to better understand the capabili-
ties and limitations of large language models (llms).” https://www.
promptingguide.ai/techniques, 2025.

[44] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. teusz Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei, “Language models are few-
shot learners,” ArXiv, vol. abs/2005.14165, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:218971783

[45] G. Kim, P. Baldi, and S. M. McAleer, “Language models can solve
computer tasks,” ArXiv, vol. abs/2303.17491, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:257834038

[46] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. H. Chi, F. Xia,
Q. Le, and D. Zhou, “Chain of thought prompting elicits reasoning
in large language models,” ArXiv, vol. abs/2201.11903, 2022. [Online].
Available: https://api.semanticscholar.org/CorpusID:246411621

[47] Y. Wang, Z. Zhang, and R. Wang, “Element-aware summarization with
large language models: Expert-aligned evaluation and chain-of-thought
method,” in Annual Meeting of the Association for Computational
Linguistics, 2023. [Online]. Available: https://api.semanticscholar.org/
CorpusID:258841145

[48] “A symbolic virtual machine built on top of the llvm compiler infras-
tructure.” https://github.com/klee/klee, 2024.

[49] “An open-source binary analysis platform for python. it combines both
static and dynamic symbolic (”concolic”) analysis, providing tools to
solve a variety of tasks..” https://angr.io/, 2024.

[50] “A theorem prover from microsoft research.” https://github.com/
Z3Prover/z3, 2025.

[51] “A software reverse engineering (sre) suite of tools developed by nsa’s
research directorate in support of the cybersecurity mission.” https://
www.ghidra-sre.org/, 2024.

[52] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley, “Byteweight:
Learning to recognize functions in binary code,” in USENIX Security
Symposium, 2014. [Online]. Available: https://api.semanticscholar.org/
CorpusID:17022472

[53] X. Yin, S. Liu, L. Liu, and D. Xiao, “Function recognition in stripped
binary of embedded devices,” IEEE Access, vol. 6, pp. 75 682–75 694,
2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:
56595927

[54] Y. Ye, Z. Zhang, Q. Shi, Y. Aafer, and X. Zhang, “D-arm:
Disassembling arm binaries by lightweight superset instruction
interpretation and graph modeling,” 2023 IEEE Symposium on
Security and Privacy (SP), pp. 2391–2408, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:259267136

[55] T. László and A. Kiss, “Obfuscating c++ programs via control flow
flattening,” 2009. [Online]. Available: https://api.semanticscholar.org/
CorpusID:5061467

[56] D. Xu, J. Ming, and D. Wu, “Generalized dynamic opaque predicates:
A new control flow obfuscation method,” in Information Security
Conference, 2016. [Online]. Available: https://api.semanticscholar.org/
CorpusID:31112136

[57] L. Glanz, P. Müller, L. Baumgärtner, M. Reif, S. Amann,
P. Anthonysamy, and M. Mezini, “Hidden in plain sight: Obfuscated
strings threatening your privacy,” Proceedings of the 15th ACM Asia
Conference on Computer and Communications Security, 2020. [Online].
Available: https://api.semanticscholar.org/CorpusID:211075800

[58] P. Garba and M. Favaro, “Saturn - software deobfuscation framework
based on llvm,” Proceedings of the 3rd ACM Workshop on Software
Protection, 2019. [Online]. Available: https://api.semanticscholar.org/
CorpusID:202538819

[59] Y. Zhao, Z. Tang, G. Ye, X. Gong, and D. Fang, “Input-
output example-guided data deobfuscation on binary,” Security

and Communication Networks, 2021. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:245184281

[60] “Flare obfuscated string solver (flare-floss).” https://github.com/
mandiant/flare-floss, 2025.

[61] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in Neural Information Processing Systems, 2013.
[Online]. Available: https://api.semanticscholar.org/CorpusID:16447573

[62] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in North
American Chapter of the Association for Computational Linguistics,
2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:
52967399

[63] H. Dai, B. Dai, and L. Song, “Discriminative embeddings of latent
variable models for structured data,” ArXiv, vol. abs/1603.05629, 2016.
[Online]. Available: https://api.semanticscholar.org/CorpusID:2708270

[64] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic
representations from tree-structured long short-term memory networks,”
ArXiv, vol. abs/1503.00075, 2015. [Online]. Available: https://api.
semanticscholar.org/CorpusID:3033526

[65] Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel, “Gated graph
sequence neural networks,” arXiv: Learning, 2015. [Online]. Available:
https://api.semanticscholar.org/CorpusID:8393918

https://github.com/QwenLM/Qwen2.5-Coder
https://github.com/QwenLM/Qwen2.5-Coder
https://api.semanticscholar.org/CorpusID:267636769
https://api.semanticscholar.org/CorpusID:267636769
https://www.promptingguide.ai/techniques
https://www.promptingguide.ai/techniques
https://api.semanticscholar.org/CorpusID:218971783
https://api.semanticscholar.org/CorpusID:257834038
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:258841145
https://api.semanticscholar.org/CorpusID:258841145
https://github.com/klee/klee
https://angr.io/
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
https://www.ghidra-sre.org/
https://www.ghidra-sre.org/
https://api.semanticscholar.org/CorpusID:17022472
https://api.semanticscholar.org/CorpusID:17022472
https://api.semanticscholar.org/CorpusID:56595927
https://api.semanticscholar.org/CorpusID:56595927
https://api.semanticscholar.org/CorpusID:259267136
https://api.semanticscholar.org/CorpusID:5061467
https://api.semanticscholar.org/CorpusID:5061467
https://api.semanticscholar.org/CorpusID:31112136
https://api.semanticscholar.org/CorpusID:31112136
https://api.semanticscholar.org/CorpusID:211075800
https://api.semanticscholar.org/CorpusID:202538819
https://api.semanticscholar.org/CorpusID:202538819
https://api.semanticscholar.org/CorpusID:245184281
https://api.semanticscholar.org/CorpusID:245184281
https://github.com/mandiant/flare-floss
https://github.com/mandiant/flare-floss
https://api.semanticscholar.org/CorpusID:16447573
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:2708270
https://api.semanticscholar.org/CorpusID:3033526
https://api.semanticscholar.org/CorpusID:3033526
https://api.semanticscholar.org/CorpusID:8393918

	Introduction
	Preliminary Study and Motivation
	Preliminary Study of Existing Approaches
	Motivating Example

	Methodology
	Candidate Retrieval
	Function Context
	Context-Content Fusion

	LLM Verification

	Evaluation
	Experimental Setup
	RQ1: Enhancement of Context for Function Retrieval
	RQ2: Impact of Prompt and LLM Settings on LLM
	RQ3: Utility and Reasonability of LLM Explanations
	RQ4: Effectiveness of Co2FuLL in the BCSD task

	Discussion
	Takeaways
	Threats to Validity and Limitations

	Related Work
	Conclusion
	ACKNOWLEDGMENT
	References

