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Abstract—Binary function embedding models are applicable
to various downstream tasks within IoT device software systems
and have demonstrated advantages in numerous binary analysis
tasks, such as vulnerability (homologous) function search and
compilation optimization option identification. However, current
binary function embedding methods either learn embedding
based on code sequence, which lack the program semantics of
functions (e.g., control flow, etc.) or based on program structure
graphs, which omit global sequential information. As a result,
these methods fall short in enabling models to learn the complete
semantic of function. In this paper, we introduce FlowEmbed, a
novel approach that synergistically integrates control flow and
global semantic learning to facilitate exhaustive code comprehen-
sion. Initially, FlowEmbed harnesses a distinct relational control
flow graph combined with the power of BERT and RGCN
models to aptly capture the nuances of control flow semantics.
Moreover, by deploying the DPCNN model on a byte sequence
constructed from function machine code, FlowEmbed adeptly
discerns the inherent global sequential semantics of binary
functions. Through rigorous evaluations spanning three IoT-
related tasks, FlowEmbed’s efficacy becomes evident, showcasing
notable improvements: a 20.6% improvement in compilation
optimization option identification, a 1.8 % improvement in binary
function similarity analysis, and an 11.9% improvement in ho-
mologous function search. Collectively, these results underscore
FlowEmbed’s superior capability, positioning it as a invaluable
asset in a binary analysis application.

Index Terms—deep learning, binary function embedding,
static analysis, binary code search, binary code similarity de-
tection

[. INTRODUCTION

As the number of 10T (Internet of Things) devices continues
to grow, ensuring the security of software running on these
devices becomes paramount. However, many [oT device sup-
pliers only provide binary files of software systems, making
source code unavailable for security analysis. These binaries,
often compiled with varying compiler settings, complicate
binary security analysis. Furthermore, vendors strip symbolic
information from these files, rendering text-based security
analysis nearly unfeasible. Therefore, as deep learning gains
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momentum, the focus of research has shifted towards leverag-
ing deep learning to learn binary code embedding and apply
them to downstream security analysis tasks.

Binary function embedding models employ deep learning
techniques to transform binary function into embedding. They
are utilized for various downstream tasks in IoT scenarios,
such as compilation optimization option identification [1],
binary function similarity analysis [2]-[4], and homologous
function search [5], [6]. Despite encouraging developments
in binary function embedding, challenges persist that can
compromise embedding quality and downstream task perfor-
mance.

G1: Code Sequence-Based Methods. Techniques in this
category utilize natural language processing to learn binary
code sequences, such as assembly code and intermediate
representations. InnerEye [7] and DEEPBindiff [8] encode
binary files with word2vec models after normalizing assembly
code using normalization strategies. Asm2vec [9] uses the PV-
DM model to learn both instruction and function embeddings.
XLIR [10] learns the embedding of IR using the BERT
model after converting the assembly code to an intermediate
representation. A notable limitation (P1) is these methods’
inability to explicitly learn semantic features of the code, such
as control flow semantics or data flow semantics.

G2: Program Structure-Based Methods. These tech-
niques, relying on tools like graph neural networks, study
program structure graphs derived from binary code, such
as control flow graphs (CFGs) and abstract syntax trees,
to grasp code semantics. For instance, Gemini [2] employs
Structure2vec to study CFG. Guo et al. [3] uses graph neural
networks to learn various types of program graphs, including
CFG, data flow graph and call graph. Asteria [4] applies
the Tree-LSTM to understand a function’s abstract syntax
tree. However, these approaches often neglect the unique
information inherent in different program structures (P2). For
example, each edge in a CFG represents a different jump
relationship. Moreover, Since this type of approach relies on
program structure graphs, they also miss the global sequential
information (P3), making it difficult for the model to capture
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comprehensive code semantics.

To address the aforementioned problems, we introduce
FlowEmbed, a novel method rooted in control flow semantic
and global semantic, ensuring a holistic understanding of
the code. Distinct from previous approaches, we propose the
relational control flow graph (for P1 and P2) based on
different control flow jump relationships. We then employ
BERT and RGCN models to capture control flow semantics.
To acquire the global sequential information of the code,
we construct a byte sequence from the function’s machine
code and leverage the DPCNN model, known for grasping
long-range dependencies in sequences, to study the global
semantics within these byte sequences (for P3).

We extensively evaluated FlowEmbed on three downstream
tasks closely aligned with IoT scenarios: compilation opti-
mization option identification, binary function similarity
analysis, and homologous function search. Our findings
underline FlowEmbed’s superior performance and generaliz-
ability over baseline models. Ablation studies further sub-
stantiate the enhancements brought about by FlowEmbed’s
control flow semantic learning and global semantic learning,
with performance gains of 6.8% and 20.6% respectively in the
homologous function search task. In conclusion, FlowEmbed
proves adept at generating high-quality function embedding,
invaluable for various binary analysis tasks.

In summary, we made the following contributions:

« We propose and implement a novel method, FlowEmbed,
which primarily combines control flow semantic and
global semantic to obtain embedding for binary function.
We conducted a comprehensive evaluation across three
pertinent downstream tasks, affirming its efficacy. Specif-
ically, FlowEmbed showcased improvements: compila-
tion optimization option identification (20.6%), binary
function similarity analysis (1.8%), and homologous
function search (11.9%).

We designed a relational control flow graph that aptly
represents the control flow semantics of functions. This

graph distinguishes subtle control flow differences by
constructing diverse jump relationships between basic
blocks.

II. RELATED WORK

Language Embedding Model. In recent years, Language
Embedding Models are pivotal in the realm of natural lan-
guage processing. They utilize neural networks to transform
natural language into high-dimensional embedding vectors.
Word2vec [11] utilizes Skip-gram and CBOW models for
contextual word semantics, but lacks context-specific word
embeddings. ELMo [12] uses RNNs to generate dynamic
context-based embeddings. The Transformer [13] in 2017 in-
troduced self-attention for parallel embedding training. BERT
[14], a bidirectional Transformer, added two pre-training tasks
for comprehensive semantic understanding. ELECTRA [15]
optimizes BERT by emphasizing token replacement detection
during pretraining.

Binary Code Embedding Model. As the field of deep
learning continues to advance, the conversion of binary code
into assembly code, coupled with the integration of language
embedding models from the domain of natural language pro-
cessing for learning assembly code embeddings, has emerged
as a prominent area of research. Gemini [2] employs seven
statistical features of basic blocks and the Structure2vec
model to obtain embedded representations of CFGs for binary
functions. InnerEye [7] views each instruction as a word,
using the Skip-gram model from word2vec to encode binaries.
Asm2vec [9] trains on assembly code sequences, inspired by
the PV-DM model, and samples based on CFGs. OrderMatters
[16] develops four pre-training tasks for assembly code, uses
the BERT model to refine basic block embeddings, and
integrates graph neural networks with ResNet for CFGs em-
beddings. Asteria [4], rooted in the Tree-LSTM model, trains
on ASTs from decompiled pseudocode, updating embeddings
for binary functions. Palmtree [17], a Transformer-based
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Fig. 1. Detailed design of FlowEmbed. Trm is the transformer encoder unit, BB is a basic block, Ey, (n = 1...N) are tokens of a basic block, T, (n = 1...N)

are hidden states of other tokens of the sequence.
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model, presents three pre-training tasks to secure contextual
semantics and produce instruction embeddings.

III. DETAILED DESIGN

As illustrated in fig. 1, FlowEmbed consists of two com-
ponents: Control Flow Semantic Learning (III-A) and Global
Semantic Learning (III-B). The former employs a basic block
embedding model and a relational control flow graph to
understand the intricate control flow information of a function.
Futhermore, the latter leverages DPCNN and a byte sequence
to capture the global sequence information of the function.
Ultimately, these two components are integrated to form a
comprehensive semantic representation of the function’s code.

A. Control Flow Semantic Learning

In this section, our target is to learn the control flow seman-
tic of function. Initially, we employ the basic block embedding
model (III-A1) to capture the embeddings of basic block
nodes. Subsequently, we derive the control flow semantic of
function using relational control flow graph (III-A2).

1) Basic Block Embedding Model: In line with prior work
[16], we employ the BERT model to obtain embedding for
assembly language. One challenge arising from the assembly
code is the presence of constants and strings, leading to
Out-of-Vocabulary (OOV) issues. To alleviate this, we adopt
normalization strategies. Specifically, We replace strings with
a special token [STR], and constants exceeding a length of
five(from [17]) are replaced with [ADDR]. A basic block,
denoted as B; where 7 ranges from 1 to k, is a sequence of
consecutive instructions without any branching. It comprises
multiple instructions but lacks control flow jump instructions
such as JM P, JZ, and so on. Semantic embeddings of basic
block are crucial for learning control flow semantics.
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To enhance the BERT model’s capability in accurately
capturing basic block embeddings, we construct four pre-
training data related to basic blocks based on the function’s
CFG. As depicted in fig. 2, four pre-training data correspond
to four distinct pre-training tasks. Masked Language Model
Task: Analogous to the original BERT training task, we
randomly replace some tokens in the code sequence with
a special token [MASK]. The BERT model is then tasked
with predicting the original tokens that were replaced. The
objective of this task is to make the model discern the
relationships between individual tokens within a basic block.
Adjacent Block Prediction Task: To facilitate the model
in understanding the relationships between basic blocks and
recognizing the execution context of a basic block, we create
inputs consisting of basic block pairs for the BERT model.
The aim is to predict if two basic blocks are adjacent nodes
in the CFG. We randomly sample an equal number of block
pairs from same CFG (one set where the blocks are adjacent
and another where they are not). Block-Graph Relationship
Task: Similarly, for the third task, we randomly sample equal
numbers of basic block pairs from different CFGs. The model
predicts if two basic blocks belong to same graph, which aids
model in learning the relationship between basic blocks and
their corresponding graphs, benefiting graph embedding gen-
eration. Compilation Configuration Discrimination Task:
The fourth task hones model’s ability to discern different
compilation configurations. During training, we categorize
basic blocks based on their compilation configurations and
task the model with predicting these categories. By engaging
in these tasks, our methodology aims to provide a holistic
understanding of assembly language semantics through BERT
model.
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Fig. 2. Pretrain process of BERT model. Homologous functions are obtained from the same source code according to different compilation configurations.
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2) Relational Control Flow Graph: Control Flow Graph
(CFG) have frequently been employed to depict the con-
trol flow within function [16]. Subsequently, Graph Neural
Networks (GNNs) were utilized to learn graph embedding
from CFG, aiming to represent the control flow semantic
embeddings of functions. However, conventional CFG rep-
resentations often lack a comprehensive portrayal of control
flow semantics, overlooking diverse types of control flow
edges. This oversight may lead to the omission of certain
pertinent control flow semantics.To address this limitation, we
introduce the Relational Control Flow Graph (RCFG), which
models various control flow edge types to encapsulate a more
comprehensive control flow semantics. Consistent with the
approach of CFG, we first partition all basic blocks within
functions. We then categorize the jump relations between
basic blocks into sequential jumps (represented by a type O
edge, indicating truthful conditions and sequential execution
flow) and conditional jumps (represented by a type 1 edge,
indicating false conditions execution flow). After constructing
the RCFG, We utilize the basic block embedding model as
previously mentioned, transforming the assembly codes of all
basic block nodes into their corresponding embeddings.

Subsequently, we apply RGCN [18] to derive the semantic
and structural embeddings for each RCFG. The graph em-
bedding process of RGCN can be divided into two primary
stages: neighbor node aggregation and graph pooling. Distinct
from traditional GNNs, RGCN contemplates multiple inter-
node relationships and leverages graph matrix neural networks
to address the impact of different edge relations on nodes,
harmonizing impeccably with the RCFG structure. For each
basic block node B; in RCFG, the neighbor node aggregation
formula is delineated in eq. (1). Here, N; signifies the set
of neighbor nodes related to B; by relation r, while ¢;
is a normalization constant with a value of |N7|. W is a
linear transformation function, translating neighbor nodes of
the same edge type using a shared parameter matrix Wfl). The
quantity of Wr(l) equals the number of edge types in RCFG,
and [ represents the depth of the network.

The graph pooling procedure, presented in eq. (2), involves
summing and then averaging the embeddings of all updated
basic block nodes, thereby yielding the overall RCFG graph
embedding, where k is the total number of basic block nodes
in RCFG. Through these comprehensive procedures, we have
effectively obtained an embedding saturated with complete
control flow semantics.

1
B = LeakyRelu(Y" S —wOBY) (1)
rerjent T

1 k
Gembed = E Z Bz
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B. Global Semantic Learning

()]

While the graph embeddings from RCFG provide compre-
hensive control flow semantic information, their dependence
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on graph structures inadvertently results in a loss of global
sequential semantic information of the function. Addressing
this shortcoming, we introduced a module specifically de-
signed to learn the global semantics of functions. Initially,
upon acquiring the machine code of a function, we segment
the machine code sequence into multiple bytes, taking one
byte as a unit. Each byte of machine code is then converted
into its corresponding decimal value, ranging from 0 to 255,
culminating in the formation of a byte sequence. Once the
byte sequence of the function is obtained, our goal is to
ensure a comprehensive coverage of the sequence; hence,
we standardize the length of the byte sequence to 2048. In
instances where the length of the function’s byte sequence is
insufficient, we employ the numeral 256 as a special padding
token to achieve completeness. Consequently, the vocabulary
size of the byte sequence is 257. Leveraging the PyTorch
framework, we initialize an embedding layer for embedding
each token, resulting in 128-dimensional embedding. This
transformation converts the machine code into a 2048x128-
dimensional tokens embedding matrix.

E= Gcmbcd + ]\/fcmbcd 3

Recognizing the capability of DPCNN [19] in extract-
ing long-range dependencies by progressively deepening the
network, we utilize DPCNN to learn the global sequential
semantic information present within the tokens embeddings.
The resulting embedding from this process is denoted as
Memped. Upon completion of both the control flow seman-
tic learning and the global semantic learning phases, we
obtain two distinct embeddings: control flow semantic em-
bedding (Gempbeq) and global sequential semantic embedding
(M eimpeq)- To consolidate the semantic information from both
embeddings, we adopt a straightforward summation approach.
The final comprehensive semantic embedding of the function,
FE, is thus obtained, as illustrated in eq. (3).

IV. EXPERIMENT

In this section, we focus on evaluating three downstream
tasks commonly used in IoT scenarios [16] [1] [5]. Therefore,
we aim to answer the following research questions:

RQ1: How well does FlowEmbed perform on compilation
optimization option identification (COOI) task?

RQ2: How well does FlowEmbed perform on binary func-
tion similarity analysis (BFSA) task?

RQ3: How well does FlowEmbed perform on homologous
function search (HFS) task?

RQ4: How is the contribution of each component?

A. Experiment Setup

1) Experiment Environment: We use IDA Pro 7.5 to disas-
semble the binaries, and our code uses python 3.8, using DGL,
and Pytorch to implement FlowEmbed. We run our evaluation
on Ubuntu 22.04 with an Intel Xeon 128-core 3.0GHz CPU,
including hyperthreading, 1TB memory, and 2 Nvidia V100
32GB GPUs.
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2) Compared Methods: Given the cross-architecture sce-
nario in IoT and the setting for function code embedding
learning, we opted to replicate and train five relevant state-of-
the-art (SOTA) models, based on official papers or their corre-
sponding code implementations. These models are delineated
as follows: GCN employs GCN [20] to learn embedding from
Control Flow Graph (CFG). Notably, the node embeddings
are initialized through a random generation process; RGCN
utilizes RGCN to obtain embedding from the RCFG. The
node embeddings initialization is similar to GCN; Gemini
utilizes the Structure2vec approach to derive embeddings
from CFG (nodes are composed of seven statistical fea-
tures); OrderMatters collects information from three diverse
perspectives (semantic, structural, and order) to produce a
robust function embedding; Asteria pivotes on the power of
abstract syntax trees and employs a Tree-LSTM model to
distill embeddings for functions.

3) Datasets: As illustrated in table I, we have meticulously
constructed four distinct datasets to facilitate both training
and evaluation. These datasets encompass two architectures
(ARM, X86) and four optimization levels (00, O1, O2,
and O3). The constructed datasets serve multiple objectives:
BERT is designed explicitly for pre-training the BERT model;
COOI is used to evaluate compilation optimization option
identification task; BFSA is used to evaluate binary function
similarity analysis task; HFS is used to evaluate homologous
function search task. For BERT pre-training, we sourced 79
open-source projects from GitHub and SourceForge, including
libsndfile, busybox, and binutils. After manual compilation,
this yielded 318,442 functions. Since BERT processes basic
blocks, this provides extensive data. For evaluation, we chose
projects not in the pre-training set, like openssl (versions
1.0.1f and 1.1.1m), libcurl, and ncurses, totaling 104,350 func-
tions. These inform our evaluation datasets for the specified
tasks.

TABLE I
BASIC STATISTICS OF THE DATASETS.

Dataset | Training | Validation | Testing All
BERT | 254753 31844 31845 | 318442
COO0I 83480 10437 10433 | 104350
BFSA 58436 12520 12524 | 83480

HFS 66784 8348 8339 83480

4) Evaluation Metrics: Given the unique objectives asso-
ciated with each task, we utilize distinct evaluation metrics
to evaluate their performances. For the COOI task, accu-
racy serves as the primary evaluation metric, capturing the
proportion of correctly identified optimization options. The
BFSA task employs the Area Under Curve (AUC) as its
benchmark metric. AUC provides insights into the model’s
ability to differentiate between positive and negative samples.
The formula for AUC is illustrated in eq. (4), where P denotes
the count of positive samples, /N denotes the count of negative
samples, p; is the predicted score for a positive sample,

954

n; is the predicted score for a negative sample, I(p;,n;)
denotes that if p; is greater than n;, the value is 1, which
is equal to 0.5, otherwise 0. The evaluation criterion for
the HFS task is the mean average precision (MAP, eq. (6)).
Average precision (AP, eq. (5)) is the average accuracy of one
prediction result, where: n is the total number of prediction
functions; k is the ranking position of the prediction functions;
P(k) is the proportion of homologous functions among the
first k prediction functions; sim(k) indicates whether the
kth prediction function is a homologous function, 1 for yes,
and 0 for no;Ng;,, indicates the total number of homologous
functions in the test dataset. MAP is the mean value of the
average accuracy of the multiple prediction results, where: ¢
is the serial number of the prediction, () is the total number
of predictions, and AP(q) is the average accuracy of the ¢;h
prediction result.
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Fig. 3. The training framework of COOI task.

It seeks to infer which compiler settings are utilized during
the compilation process of a function. This task has found
widespread applications, notably in the realm of vulnerability
search within the IoT. In this paper, we focus on the identifica-
tion of four compilation optimization option (O0-O3) on two
prominent architectures, namely ARM and X86. To evaluate
the quality of function embeddings in this context, we employ
a framework as illustrated in fig. 3. We input the function
embeddings obtained from FlowEmbed into a feed-forward
neural network. Upon processing through the network, these
embeddings are transformed into a 4-dimensional vector. This
vector is then passed through a softmax activation function.
The resultant values are then compared with the true labels
to compute cross-entropy loss. Subsequently, through back-
propagation, the parameters of both the FlowEmbed and the
feed-forward network are updated. From the results (table II)
we can make the following observations:

1) The embedding produced by FlowEmbed outperform

the quality of those generated by Order Matters and
Gemini in the context of COOI task. It achieves the
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TABLE II
ACCURACY OF COOI TASK.

Models ARM X86 Avg
GCN 0.298 0.290 0.294
RGCN 0.583 0.605 0.594
Gemini 0.523 0.594 0.556
Order Matters | 0.568 0.659 0.614
FlowEmbed-CF | 0.708 0.873 0.791
FlowEmbed-GS | 0.628 0.694 0.661
FlowEmbed 0.777 0.863 0.820

highest accuracy, surpassing even 26.4%. This observa-
tion underscores that the function embedding generated
by FlowEmbed exhibit superior generalization when em-
ployed in downstream tasks.

GCN achieves an average accuracy of only 29.4%, while
Gemini, leveraging expert-designed node features, attains
an average accuracy of merely 55.6%. Conversely, Order
Matters, employing the basic block embedding model
(similar to FlowEmbed), achieves an average accuracy
of 61.4%, surpassing GCN by 32.0% and Gemini by
5.8%. These results substantiate the efficacy of the basic
block embedding model and underscore the necessity of
a well-structured basic block embedding model.

RGCN achieves an average accuracy of 59.4%, surpass-
ing GCN, which also employs random node embeddings,
by 30.0%. The key distinction between the two lies in the
fact that RGCN utilizes a RCFG, while GCN employs
a CFG. This finding underscores the effectiveness of
utilizing a RCFG.

2)

3)

C. Performance of BFSA task
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Fig. 4. The training framework of BFSA task.

It determines two functions were compiled from same
source code (homologous function). It is extensively utilized
in the realm of IoT for vulnerability searches and component
analysis tasks. In this study, we have chosen two distinct
scenarios to evaluate the performance of FlowEmbed: Cross-
Architecture (XA), where two functions are compiled from the
same compilation optimization option but hail from different
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architectures; and Cross-Optimization (XO), where both func-
tions are compiled from the same architecture but are derived
from different compilation optimization options.
Loss = % Z(marigin — Simy, + Simy,) @)
To evaluate the quality of function embedding for this task,
we employ a framework as depicted in fig. 4. The framework
accepts three inputs: the target function and its corresponding
homologous function and non-homologous function. Once
passed through FlowEmbed, embeddings for the respective
functions are generated. We employ cosine distance to gauge
the similarity between two embeddings. Lastly, the loss be-
tween positive and negative samples is computed using eq. (7),
where margin represents the distance between positive and
negative samples, m stands for batch size, Sim, symbolizes
the cosine similarity between the positive sample and the
target function, and Sim,, illustrates the cosine similarity
between the negative sample and the target function. From the
results (table III) we can make the following observations:
1) FlowEmbed’s function embeddings excel over Gemini,
Order Matters, and Asteria in binary function similarity
analysis, achieving an AUC higher even by 3.3%. This
advantage stems from FlowEmbed’s comprehensive se-
mantic capture.
Methods like Gemini and Asteria, without the basic
block embedding, show significant AUC fluctuations
for XA and XO tasks. In contrast, Order Matters and
FlowEmbed, using the basic block embedding model,
demonstrate more robustness, indicating the model’s
efficacy in capturing distinct semantics in XA and XO.
Both GCN and RGCN use the same node embedding
initialization. Yet, RGCN achieves an AUC 4.9% higher
than GCN, suggesting that RCFG outperforms CFG for
the BFSA task.

2)

3)

D. Performance of HFS task

Cosine
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H function i
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Fig. 5. The whole process of HFS task.

The BFSA task identifies function similarities, while the
homologous function search (HFS) task requires a stricter
distinction between positive and negative samples. As shown
in fig. 5, after processing through the binary function em-
bedding model, the target function and functions from the
function pool (mostly non-homologous functions) are placed
in a semantic embedding space. The HFS task’s goal is to
rank these functions based on their cosine similarity to the
target, striving to prioritize the homologous function. We use
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TABLE III
AUC OF BFSA TASK.

XA X0 .
Models 00 Ol 02 03 |[ARM X8¢ | Mix | Ave
GCN 0950 0.897 0896 0905 | 0.876 0.855 | 0.875 | 0.893
RGCN 0973 0958 0951 0962 | 0.924 0.900 | 0.928 | 0.942
Gemini 0991 0969 0968 0970 | 0.943 0.951 | 0.953 | 0.964
Order Matters | 0.978 0976 0975 0.978 | 0.973 0961 | 0.961 | 0.972
Asteria 0990 0988 0989 0987 | 0962 0.968 | 0.966 | 0.979
FlowEmbed-CF | 0.999 0997 0.995 0.998 | 0.993 0989 | 0.993 | 0.995
FlowEmbed-GS | 0.996 0991 0992 0992 | 0982 0.972 | 0.984 | 0.987
FlowEmbed | 0.999 0.998 0.998 0.998 | 0.996 0.992 | 0.995 | 0.997

the Mean Average Precision (MAP) metric for evaluation.
We adopted the framework (fig. 4) from the BFSA task
to train and also explored varying function pool sizes to
determine their impact on method performance. From the
results (table IV) we can make the following observations:

1) FlowEmbed’s function embeddings outperform those of
Asteria, Order Matters, and Gemini in the task of ho-
mologous function search. They exhibit superior capa-
bility in distinguishing between homologous and non-
homologous functions, achieving the highest MAP score,
even surpassing it by 29.0%.

2) As the function pool size increases, and despite a de-
crease in MAP scores for all existing methods, this trend
is expected. FlowEmbed maintains a higher score than
all other testing methods, demonstrating its superiority.

3) RGCN significantly outperforms GCN in three distinct
tasks, evidencing that RCFG offers better generalization
and control flow semantic representation than CFG.

4) Gemini creates embeddings from manually designed
features but lags behind deep learning-based models like
FlowEmbed. This underscores the advantage of deep
neural networks in binary function embedding.

In short, FlowEmbed generates high-quality (better than
existing work) function embedding, which are helpful for
three IoT-related tasks.

E. Impact of each component in FlowEmbed

In this section, we analyze the contribution of two compo-
nents, Control Flow Semantic Learning and Global Semantic
Learning, to FLowEmbed.

Control Flow Semantic Learning. As demonstrated in
table II, table III, table IV, the performance metrics after
employing FlowEmbed-CF showed a decline when compared
to the original FlowEmbed. This change is attributed to the
enhancement in FlowEmbed’s performance due to control
flow semantic learning. By employing RCFG, control flow
semantic learning presents the control flow relationships of
functions more comprehensively. The combination of RGCN
and basic block embedding models facilitates the extraction
of control flow semantics from RCFG, thus enhancing the
expressiveness of FlowEmbed embeddings. For instance, in

the homologous function search task, the MAP score of
FlowEmbed-CF stood at 65.0%. However, with the aid of
control flow semantic learning, FlowEmbed enriched its se-
mantic information, pushing the MAP score up to 71.8%.

Global Semantic Learning. In three related downstream
tasks in table II, table III, table IV,, the performance metrics
post-integration with FlowEmbed-GS notably decreased in
comparison to the standalone FlowEmbed. This shift is indeed
due to the significant contribution of global semantic learning
to FlowEmbed’s improved performance. With the assistance
of the DPCNN model, global semantic learning captures
the long-range dependencies in byte sequences, leading to
embeddings with comprehensive sequential semantics. For
example, in the compilation optimization option identification
task, the accuracy rate of FlowEmbed-GS was only 66.1%.
In contrast, with the support of global semantic learning,
FlowEmbed’s accuracy surged to 82.0%.

V. DISCUSSION

In this paper, our goal is to develop a high-quality binary
function embedding model that can be applied to various
IoT-related downstream tasks. When applying, only an output
layer needs is added without changes to the model’s structure.

However, in this paper, we only evaluated the role of
control flow semantics in the model’s understanding of binary
function semantics, without involving other code semantic
information (such as data flow, abstract syntax trees, etc.). In
fact, utilizing richer semantic information allows the model to
better model the semantics of functions, resulting in higher-
quality embeddings, which is very beneficial for improving
performance. We leave this for future work.

It’s worth noting that for global semantic learning, we only
used DPCNN and byte sequences. This is because the com-
bination of the two has relatively low hardware requirements,
preventing excessive hardware demands when combined with
control flow semantic learning. In reality, by substituting more
complex models, the learning of global sequential information
is greatly beneficial. We leave this for future work.

VI. CONCLUSION

In this paper, we address unresolved challenges in the field
of function embedding learning. We present FlowEmbed, a
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TABLE IV
MAP SCORES OF HFS TASK.

Models PoolSize=100 | PoolSize=500 | PoolSize=1000 | PoolSize=2000 | PoolSize=3000 | Avg
GCN 0.379 0.235 0.194 0.160 0.141 0.222
RGCN 0.488 0.324 0.282 0.244 0.225 0.313
Gemini 0.640 0.461 0.396 0.337 0.306 0.428
Order Matters 0.725 0.611 0.529 0.462 0.398 0.545
Asteria 0.806 0.646 0.558 0.505 0.479 0.599
FlowEmbed-CF 0.863 0.714 0.635 0.543 0.495 0.650
FlowEmbed-GS 0.753 0.565 0.476 0.403 0.363 0.512
FlowEmbed 0.902 0.777 0.703 0.627 0.579 0.718
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