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Abstract—Binary function embedding models are applicable
to various downstream tasks within IoT device software systems
and have demonstrated advantages in numerous binary analysis
tasks, such as vulnerability (homologous) function search and
compilation optimization option identification. However, current
binary function embedding methods either learn embedding
based on code sequence, which lack the program semantics of
functions (e.g., control flow, etc.) or based on program structure
graphs, which omit global sequential information. As a result,
these methods fall short in enabling models to learn the complete
semantic of function. In this paper, we introduce FlowEmbed, a
novel approach that synergistically integrates control flow and
global semantic learning to facilitate exhaustive code comprehen-
sion. Initially, FlowEmbed harnesses a distinct relational control
flow graph combined with the power of BERT and RGCN
models to aptly capture the nuances of control flow semantics.
Moreover, by deploying the DPCNN model on a byte sequence
constructed from function machine code, FlowEmbed adeptly
discerns the inherent global sequential semantics of binary
functions. Through rigorous evaluations spanning three IoT-
related tasks, FlowEmbed’s efficacy becomes evident, showcasing
notable improvements: a 20.6% improvement in compilation
optimization option identification, a 1.8% improvement in binary
function similarity analysis, and an 11.9% improvement in ho-
mologous function search. Collectively, these results underscore
FlowEmbed’s superior capability, positioning it as a invaluable
asset in a binary analysis application.

Index Terms—deep learning, binary function embedding,
static analysis, binary code search, binary code similarity de-
tection

I. INTRODUCTION

As the number of IoT (Internet of Things) devices continues

to grow, ensuring the security of software running on these

devices becomes paramount. However, many IoT device sup-

pliers only provide binary files of software systems, making

source code unavailable for security analysis. These binaries,

often compiled with varying compiler settings, complicate

binary security analysis. Furthermore, vendors strip symbolic

information from these files, rendering text-based security

analysis nearly unfeasible. Therefore, as deep learning gains
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momentum, the focus of research has shifted towards leverag-

ing deep learning to learn binary code embedding and apply

them to downstream security analysis tasks.

Binary function embedding models employ deep learning

techniques to transform binary function into embedding. They

are utilized for various downstream tasks in IoT scenarios,

such as compilation optimization option identification [1],

binary function similarity analysis [2]–[4], and homologous

function search [5], [6]. Despite encouraging developments

in binary function embedding, challenges persist that can

compromise embedding quality and downstream task perfor-

mance.

G1: Code Sequence-Based Methods. Techniques in this

category utilize natural language processing to learn binary

code sequences, such as assembly code and intermediate

representations. InnerEye [7] and DEEPBindiff [8] encode

binary files with word2vec models after normalizing assembly

code using normalization strategies. Asm2vec [9] uses the PV-

DM model to learn both instruction and function embeddings.

XLIR [10] learns the embedding of IR using the BERT

model after converting the assembly code to an intermediate

representation. A notable limitation (P1) is these methods’

inability to explicitly learn semantic features of the code, such

as control flow semantics or data flow semantics.

G2: Program Structure-Based Methods. These tech-

niques, relying on tools like graph neural networks, study

program structure graphs derived from binary code, such

as control flow graphs (CFGs) and abstract syntax trees,

to grasp code semantics. For instance, Gemini [2] employs

Structure2vec to study CFG. Guo et al. [3] uses graph neural

networks to learn various types of program graphs, including

CFG, data flow graph and call graph. Asteria [4] applies

the Tree-LSTM to understand a function’s abstract syntax

tree. However, these approaches often neglect the unique

information inherent in different program structures (P2). For

example, each edge in a CFG represents a different jump

relationship. Moreover, Since this type of approach relies on

program structure graphs, they also miss the global sequential

information (P3), making it difficult for the model to capture
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comprehensive code semantics.

To address the aforementioned problems, we introduce

FlowEmbed, a novel method rooted in control flow semantic

and global semantic, ensuring a holistic understanding of

the code. Distinct from previous approaches, we propose the

relational control flow graph (for P1 and P2) based on

different control flow jump relationships. We then employ

BERT and RGCN models to capture control flow semantics.

To acquire the global sequential information of the code,

we construct a byte sequence from the function’s machine

code and leverage the DPCNN model, known for grasping

long-range dependencies in sequences, to study the global

semantics within these byte sequences (for P3).

We extensively evaluated FlowEmbed on three downstream

tasks closely aligned with IoT scenarios: compilation opti-
mization option identification, binary function similarity
analysis, and homologous function search. Our findings

underline FlowEmbed’s superior performance and generaliz-

ability over baseline models. Ablation studies further sub-

stantiate the enhancements brought about by FlowEmbed’s

control flow semantic learning and global semantic learning,

with performance gains of 6.8% and 20.6% respectively in the

homologous function search task. In conclusion, FlowEmbed

proves adept at generating high-quality function embedding,

invaluable for various binary analysis tasks.

In summary, we made the following contributions:

• We propose and implement a novel method, FlowEmbed,

which primarily combines control flow semantic and

global semantic to obtain embedding for binary function.

• We conducted a comprehensive evaluation across three

pertinent downstream tasks, affirming its efficacy. Specif-

ically, FlowEmbed showcased improvements: compila-

tion optimization option identification (20.6%), binary

function similarity analysis (1.8%), and homologous

function search (11.9%).

• We designed a relational control flow graph that aptly

represents the control flow semantics of functions. This

graph distinguishes subtle control flow differences by

constructing diverse jump relationships between basic

blocks.

II. RELATED WORK

Language Embedding Model. In recent years, Language

Embedding Models are pivotal in the realm of natural lan-

guage processing. They utilize neural networks to transform

natural language into high-dimensional embedding vectors.

Word2vec [11] utilizes Skip-gram and CBOW models for

contextual word semantics, but lacks context-specific word

embeddings. ELMo [12] uses RNNs to generate dynamic

context-based embeddings. The Transformer [13] in 2017 in-

troduced self-attention for parallel embedding training. BERT

[14], a bidirectional Transformer, added two pre-training tasks

for comprehensive semantic understanding. ELECTRA [15]

optimizes BERT by emphasizing token replacement detection

during pretraining.

Binary Code Embedding Model. As the field of deep

learning continues to advance, the conversion of binary code

into assembly code, coupled with the integration of language

embedding models from the domain of natural language pro-

cessing for learning assembly code embeddings, has emerged

as a prominent area of research. Gemini [2] employs seven

statistical features of basic blocks and the Structure2vec

model to obtain embedded representations of CFGs for binary

functions. InnerEye [7] views each instruction as a word,

using the Skip-gram model from word2vec to encode binaries.

Asm2vec [9] trains on assembly code sequences, inspired by

the PV-DM model, and samples based on CFGs. OrderMatters

[16] develops four pre-training tasks for assembly code, uses

the BERT model to refine basic block embeddings, and

integrates graph neural networks with ResNet for CFGs em-

beddings. Asteria [4], rooted in the Tree-LSTM model, trains

on ASTs from decompiled pseudocode, updating embeddings

for binary functions. Palmtree [17], a Transformer-based
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Fig. 1. Detailed design of FlowEmbed. Trm is the transformer encoder unit, BB is a basic block, En(n = 1...N) are tokens of a basic block, Tn(n = 1...N)
are hidden states of other tokens of the sequence.
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model, presents three pre-training tasks to secure contextual

semantics and produce instruction embeddings.

III. DETAILED DESIGN

As illustrated in fig. 1, FlowEmbed consists of two com-

ponents: Control Flow Semantic Learning (III-A) and Global

Semantic Learning (III-B). The former employs a basic block

embedding model and a relational control flow graph to

understand the intricate control flow information of a function.

Futhermore, the latter leverages DPCNN and a byte sequence

to capture the global sequence information of the function.

Ultimately, these two components are integrated to form a

comprehensive semantic representation of the function’s code.

A. Control Flow Semantic Learning

In this section, our target is to learn the control flow seman-

tic of function. Initially, we employ the basic block embedding

model (III-A1) to capture the embeddings of basic block

nodes. Subsequently, we derive the control flow semantic of

function using relational control flow graph (III-A2).

1) Basic Block Embedding Model: In line with prior work

[16], we employ the BERT model to obtain embedding for

assembly language. One challenge arising from the assembly

code is the presence of constants and strings, leading to

Out-of-Vocabulary (OOV) issues. To alleviate this, we adopt

normalization strategies. Specifically, We replace strings with

a special token [STR], and constants exceeding a length of

five(from [17]) are replaced with [ADDR]. A basic block,

denoted as Bi where i ranges from 1 to k, is a sequence of

consecutive instructions without any branching. It comprises

multiple instructions but lacks control flow jump instructions

such as JMP , JZ, and so on. Semantic embeddings of basic

block are crucial for learning control flow semantics.

To enhance the BERT model’s capability in accurately

capturing basic block embeddings, we construct four pre-

training data related to basic blocks based on the function’s

CFG. As depicted in fig. 2, four pre-training data correspond

to four distinct pre-training tasks. Masked Language Model
Task: Analogous to the original BERT training task, we

randomly replace some tokens in the code sequence with

a special token [MASK]. The BERT model is then tasked

with predicting the original tokens that were replaced. The

objective of this task is to make the model discern the

relationships between individual tokens within a basic block.

Adjacent Block Prediction Task: To facilitate the model

in understanding the relationships between basic blocks and

recognizing the execution context of a basic block, we create

inputs consisting of basic block pairs for the BERT model.

The aim is to predict if two basic blocks are adjacent nodes

in the CFG. We randomly sample an equal number of block

pairs from same CFG (one set where the blocks are adjacent

and another where they are not). Block-Graph Relationship
Task: Similarly, for the third task, we randomly sample equal

numbers of basic block pairs from different CFGs. The model

predicts if two basic blocks belong to same graph, which aids

model in learning the relationship between basic blocks and

their corresponding graphs, benefiting graph embedding gen-

eration. Compilation Configuration Discrimination Task:

The fourth task hones model’s ability to discern different

compilation configurations. During training, we categorize

basic blocks based on their compilation configurations and

task the model with predicting these categories. By engaging

in these tasks, our methodology aims to provide a holistic

understanding of assembly language semantics through BERT

model.
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Fig. 2. Pretrain process of BERT model. Homologous functions are obtained from the same source code according to different compilation configurations.
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2) Relational Control Flow Graph: Control Flow Graph

(CFG) have frequently been employed to depict the con-

trol flow within function [16]. Subsequently, Graph Neural

Networks (GNNs) were utilized to learn graph embedding

from CFG, aiming to represent the control flow semantic

embeddings of functions. However, conventional CFG rep-

resentations often lack a comprehensive portrayal of control

flow semantics, overlooking diverse types of control flow

edges. This oversight may lead to the omission of certain

pertinent control flow semantics.To address this limitation, we

introduce the Relational Control Flow Graph (RCFG), which

models various control flow edge types to encapsulate a more

comprehensive control flow semantics. Consistent with the

approach of CFG, we first partition all basic blocks within

functions. We then categorize the jump relations between

basic blocks into sequential jumps (represented by a type 0

edge, indicating truthful conditions and sequential execution

flow) and conditional jumps (represented by a type 1 edge,

indicating false conditions execution flow). After constructing

the RCFG, We utilize the basic block embedding model as

previously mentioned, transforming the assembly codes of all

basic block nodes into their corresponding embeddings.

Subsequently, we apply RGCN [18] to derive the semantic

and structural embeddings for each RCFG. The graph em-

bedding process of RGCN can be divided into two primary

stages: neighbor node aggregation and graph pooling. Distinct

from traditional GNNs, RGCN contemplates multiple inter-

node relationships and leverages graph matrix neural networks

to address the impact of different edge relations on nodes,

harmonizing impeccably with the RCFG structure. For each

basic block node Bi in RCFG, the neighbor node aggregation

formula is delineated in eq. (1). Here, Nr
i signifies the set

of neighbor nodes related to Bi by relation r, while ci,r
is a normalization constant with a value of |Nr

i |. W (l)
r is a

linear transformation function, translating neighbor nodes of

the same edge type using a shared parameter matrix W
(l)
r . The

quantity of W
(l)
r equals the number of edge types in RCFG,

and l represents the depth of the network.

The graph pooling procedure, presented in eq. (2), involves

summing and then averaging the embeddings of all updated

basic block nodes, thereby yielding the overall RCFG graph

embedding, where k is the total number of basic block nodes

in RCFG. Through these comprehensive procedures, we have

effectively obtained an embedding saturated with complete

control flow semantics.

B
(l+1)
i = LeakyRelu(

∑

r∈R

∑

j∈Nr
i

1

ci,r
W (l)

r B
(l)
j ) (1)

Gembed =
1

k

k∑

i=1

Bi (2)

B. Global Semantic Learning

While the graph embeddings from RCFG provide compre-

hensive control flow semantic information, their dependence

on graph structures inadvertently results in a loss of global

sequential semantic information of the function. Addressing

this shortcoming, we introduced a module specifically de-

signed to learn the global semantics of functions. Initially,

upon acquiring the machine code of a function, we segment

the machine code sequence into multiple bytes, taking one

byte as a unit. Each byte of machine code is then converted

into its corresponding decimal value, ranging from 0 to 255,

culminating in the formation of a byte sequence. Once the

byte sequence of the function is obtained, our goal is to

ensure a comprehensive coverage of the sequence; hence,

we standardize the length of the byte sequence to 2048. In

instances where the length of the function’s byte sequence is

insufficient, we employ the numeral 256 as a special padding

token to achieve completeness. Consequently, the vocabulary

size of the byte sequence is 257. Leveraging the PyTorch

framework, we initialize an embedding layer for embedding

each token, resulting in 128-dimensional embedding. This

transformation converts the machine code into a 2048x128-

dimensional tokens embedding matrix.

E = Gembed +Membed (3)

Recognizing the capability of DPCNN [19] in extract-

ing long-range dependencies by progressively deepening the

network, we utilize DPCNN to learn the global sequential

semantic information present within the tokens embeddings.

The resulting embedding from this process is denoted as

Membed. Upon completion of both the control flow seman-

tic learning and the global semantic learning phases, we

obtain two distinct embeddings: control flow semantic em-

bedding (Gembed) and global sequential semantic embedding

(Membed). To consolidate the semantic information from both

embeddings, we adopt a straightforward summation approach.

The final comprehensive semantic embedding of the function,

E, is thus obtained, as illustrated in eq. (3).

IV. EXPERIMENT

In this section, we focus on evaluating three downstream

tasks commonly used in IoT scenarios [16] [1] [5]. Therefore,

we aim to answer the following research questions:

RQ1: How well does FlowEmbed perform on compilation

optimization option identification (COOI) task?

RQ2: How well does FlowEmbed perform on binary func-

tion similarity analysis (BFSA) task?

RQ3: How well does FlowEmbed perform on homologous

function search (HFS) task?

RQ4: How is the contribution of each component?

A. Experiment Setup

1) Experiment Environment: We use IDA Pro 7.5 to disas-

semble the binaries, and our code uses python 3.8, using DGL,

and Pytorch to implement FlowEmbed. We run our evaluation

on Ubuntu 22.04 with an Intel Xeon 128-core 3.0GHz CPU,

including hyperthreading, 1TB memory, and 2 Nvidia V100

32GB GPUs.
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2) Compared Methods: Given the cross-architecture sce-

nario in IoT and the setting for function code embedding

learning, we opted to replicate and train five relevant state-of-

the-art (SOTA) models, based on official papers or their corre-

sponding code implementations. These models are delineated

as follows: GCN employs GCN [20] to learn embedding from

Control Flow Graph (CFG). Notably, the node embeddings

are initialized through a random generation process; RGCN
utilizes RGCN to obtain embedding from the RCFG. The

node embeddings initialization is similar to GCN; Gemini
utilizes the Structure2vec approach to derive embeddings

from CFG (nodes are composed of seven statistical fea-

tures); OrderMatters collects information from three diverse

perspectives (semantic, structural, and order) to produce a

robust function embedding; Asteria pivotes on the power of

abstract syntax trees and employs a Tree-LSTM model to

distill embeddings for functions.

3) Datasets: As illustrated in table I, we have meticulously

constructed four distinct datasets to facilitate both training

and evaluation. These datasets encompass two architectures

(ARM, X86) and four optimization levels (O0, O1, O2,

and O3). The constructed datasets serve multiple objectives:

BERT is designed explicitly for pre-training the BERT model;

COOI is used to evaluate compilation optimization option

identification task; BFSA is used to evaluate binary function

similarity analysis task; HFS is used to evaluate homologous

function search task. For BERT pre-training, we sourced 79

open-source projects from GitHub and SourceForge, including

libsndfile, busybox, and binutils. After manual compilation,

this yielded 318,442 functions. Since BERT processes basic

blocks, this provides extensive data. For evaluation, we chose

projects not in the pre-training set, like openssl (versions

1.0.1f and 1.1.1m), libcurl, and ncurses, totaling 104,350 func-

tions. These inform our evaluation datasets for the specified

tasks.

TABLE I
BASIC STATISTICS OF THE DATASETS.

Dataset Training Validation Testing All

BERT 254753 31844 31845 318442

COOI 83480 10437 10433 104350

BFSA 58436 12520 12524 83480

HFS 66784 8348 8339 83480

4) Evaluation Metrics: Given the unique objectives asso-

ciated with each task, we utilize distinct evaluation metrics

to evaluate their performances. For the COOI task, accu-

racy serves as the primary evaluation metric, capturing the

proportion of correctly identified optimization options. The

BFSA task employs the Area Under Curve (AUC) as its

benchmark metric. AUC provides insights into the model’s

ability to differentiate between positive and negative samples.

The formula for AUC is illustrated in eq. (4), where P denotes

the count of positive samples, N denotes the count of negative

samples, pi is the predicted score for a positive sample,

nj is the predicted score for a negative sample, I(pi, nj)
denotes that if pi is greater than nj , the value is 1, which

is equal to 0.5, otherwise 0. The evaluation criterion for

the HFS task is the mean average precision (MAP, eq. (6)).

Average precision (AP, eq. (5)) is the average accuracy of one

prediction result, where: n is the total number of prediction

functions; k is the ranking position of the prediction functions;

P (k) is the proportion of homologous functions among the

first k prediction functions; sim(k) indicates whether the

kth prediction function is a homologous function, 1 for yes,

and 0 for no;Nsim indicates the total number of homologous

functions in the test dataset. MAP is the mean value of the

average accuracy of the multiple prediction results, where: q
is the serial number of the prediction, Q is the total number

of predictions, and AP (q) is the average accuracy of the qth
prediction result.

AUC =

∑
I(pi, nj)

P ∗N (4)

AP =

∑n
k=1(P (k)× sim(k))

Nsim
(5)

MAP =

∑Q
q=1 AP (q)

Q
(6)

B. Performance of COOI task

FlowEmbed

Binary Function

Loss Label

Update

FFN

Fig. 3. The training framework of COOI task.

It seeks to infer which compiler settings are utilized during

the compilation process of a function. This task has found

widespread applications, notably in the realm of vulnerability

search within the IoT. In this paper, we focus on the identifica-

tion of four compilation optimization option (O0-O3) on two

prominent architectures, namely ARM and X86. To evaluate

the quality of function embeddings in this context, we employ

a framework as illustrated in fig. 3. We input the function

embeddings obtained from FlowEmbed into a feed-forward

neural network. Upon processing through the network, these

embeddings are transformed into a 4-dimensional vector. This

vector is then passed through a softmax activation function.

The resultant values are then compared with the true labels

to compute cross-entropy loss. Subsequently, through back-

propagation, the parameters of both the FlowEmbed and the

feed-forward network are updated. From the results (table II)

we can make the following observations:

1) The embedding produced by FlowEmbed outperform

the quality of those generated by Order Matters and

Gemini in the context of COOI task. It achieves the
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TABLE II
ACCURACY OF COOI TASK.

Models ARM X86 Avg
GCN 0.298 0.290 0.294

RGCN 0.583 0.605 0.594

Gemini 0.523 0.594 0.556

Order Matters 0.568 0.659 0.614

FlowEmbed-CF 0.708 0.873 0.791

FlowEmbed-GS 0.628 0.694 0.661

FlowEmbed 0.777 0.863 0.820

highest accuracy, surpassing even 26.4%. This observa-

tion underscores that the function embedding generated

by FlowEmbed exhibit superior generalization when em-

ployed in downstream tasks.

2) GCN achieves an average accuracy of only 29.4%, while

Gemini, leveraging expert-designed node features, attains

an average accuracy of merely 55.6%. Conversely, Order

Matters, employing the basic block embedding model

(similar to FlowEmbed), achieves an average accuracy

of 61.4%, surpassing GCN by 32.0% and Gemini by

5.8%. These results substantiate the efficacy of the basic

block embedding model and underscore the necessity of

a well-structured basic block embedding model.

3) RGCN achieves an average accuracy of 59.4%, surpass-

ing GCN, which also employs random node embeddings,

by 30.0%. The key distinction between the two lies in the

fact that RGCN utilizes a RCFG, while GCN employs

a CFG. This finding underscores the effectiveness of

utilizing a RCFG.

C. Performance of BFSA task

FlowEmbed

FlowEmbed

FlowEmbed

Target Function

Positive Sample

Negative Sample

Loss

Update

Update

Update

Fig. 4. The training framework of BFSA task.

It determines two functions were compiled from same

source code (homologous function). It is extensively utilized

in the realm of IoT for vulnerability searches and component

analysis tasks. In this study, we have chosen two distinct

scenarios to evaluate the performance of FlowEmbed: Cross-

Architecture (XA), where two functions are compiled from the

same compilation optimization option but hail from different

architectures; and Cross-Optimization (XO), where both func-

tions are compiled from the same architecture but are derived

from different compilation optimization options.

Loss =
1

m

∑

m

(marigin− Simp + Simn) (7)

To evaluate the quality of function embedding for this task,

we employ a framework as depicted in fig. 4. The framework

accepts three inputs: the target function and its corresponding

homologous function and non-homologous function. Once

passed through FlowEmbed, embeddings for the respective

functions are generated. We employ cosine distance to gauge

the similarity between two embeddings. Lastly, the loss be-

tween positive and negative samples is computed using eq. (7),

where margin represents the distance between positive and

negative samples, m stands for batch size, Simp symbolizes

the cosine similarity between the positive sample and the

target function, and Simn illustrates the cosine similarity

between the negative sample and the target function. From the

results (table III) we can make the following observations:

1) FlowEmbed’s function embeddings excel over Gemini,

Order Matters, and Asteria in binary function similarity

analysis, achieving an AUC higher even by 3.3%. This

advantage stems from FlowEmbed’s comprehensive se-

mantic capture.

2) Methods like Gemini and Asteria, without the basic

block embedding, show significant AUC fluctuations

for XA and XO tasks. In contrast, Order Matters and

FlowEmbed, using the basic block embedding model,

demonstrate more robustness, indicating the model’s

efficacy in capturing distinct semantics in XA and XO.

3) Both GCN and RGCN use the same node embedding

initialization. Yet, RGCN achieves an AUC 4.9% higher

than GCN, suggesting that RCFG outperforms CFG for

the BFSA task.

D. Performance of HFS task

target
function

homogous
function

non-homogous
function

...

Function Pool

Binary
Function 

Embedding 
Model 

Cosine 
Similarity

0.9899

0.9890

0.4851

....

Semantic embedding space

Fig. 5. The whole process of HFS task.

The BFSA task identifies function similarities, while the

homologous function search (HFS) task requires a stricter

distinction between positive and negative samples. As shown

in fig. 5, after processing through the binary function em-

bedding model, the target function and functions from the

function pool (mostly non-homologous functions) are placed

in a semantic embedding space. The HFS task’s goal is to

rank these functions based on their cosine similarity to the

target, striving to prioritize the homologous function. We use
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TABLE III
AUC OF BFSA TASK.

Models XA XO Mix AvgO0 O1 O2 O3 ARM X86
GCN 0.950 0.897 0.896 0.905 0.876 0.855 0.875 0.893

RGCN 0.973 0.958 0.951 0.962 0.924 0.900 0.928 0.942

Gemini 0.991 0.969 0.968 0.970 0.943 0.951 0.953 0.964

Order Matters 0.978 0.976 0.975 0.978 0.973 0.961 0.961 0.972

Asteria 0.990 0.988 0.989 0.987 0.962 0.968 0.966 0.979

FlowEmbed-CF 0.999 0.997 0.995 0.998 0.993 0.989 0.993 0.995

FlowEmbed-GS 0.996 0.991 0.992 0.992 0.982 0.972 0.984 0.987

FlowEmbed 0.999 0.998 0.998 0.998 0.996 0.992 0.995 0.997

the Mean Average Precision (MAP) metric for evaluation.

We adopted the framework (fig. 4) from the BFSA task

to train and also explored varying function pool sizes to

determine their impact on method performance. From the

results (table IV) we can make the following observations:

1) FlowEmbed’s function embeddings outperform those of

Asteria, Order Matters, and Gemini in the task of ho-

mologous function search. They exhibit superior capa-

bility in distinguishing between homologous and non-

homologous functions, achieving the highest MAP score,

even surpassing it by 29.0%.

2) As the function pool size increases, and despite a de-

crease in MAP scores for all existing methods, this trend

is expected. FlowEmbed maintains a higher score than

all other testing methods, demonstrating its superiority.

3) RGCN significantly outperforms GCN in three distinct

tasks, evidencing that RCFG offers better generalization

and control flow semantic representation than CFG.

4) Gemini creates embeddings from manually designed

features but lags behind deep learning-based models like

FlowEmbed. This underscores the advantage of deep

neural networks in binary function embedding.

In short, FlowEmbed generates high-quality (better than

existing work) function embedding, which are helpful for

three IoT-related tasks.

E. Impact of each component in FlowEmbed

In this section, we analyze the contribution of two compo-

nents, Control Flow Semantic Learning and Global Semantic

Learning, to FLowEmbed.

Control Flow Semantic Learning. As demonstrated in

table II, table III, table IV, the performance metrics after

employing FlowEmbed-CF showed a decline when compared

to the original FlowEmbed. This change is attributed to the

enhancement in FlowEmbed’s performance due to control

flow semantic learning. By employing RCFG, control flow

semantic learning presents the control flow relationships of

functions more comprehensively. The combination of RGCN

and basic block embedding models facilitates the extraction

of control flow semantics from RCFG, thus enhancing the

expressiveness of FlowEmbed embeddings. For instance, in

the homologous function search task, the MAP score of

FlowEmbed-CF stood at 65.0%. However, with the aid of

control flow semantic learning, FlowEmbed enriched its se-

mantic information, pushing the MAP score up to 71.8%.
Global Semantic Learning. In three related downstream

tasks in table II, table III, table IV,, the performance metrics

post-integration with FlowEmbed-GS notably decreased in

comparison to the standalone FlowEmbed. This shift is indeed

due to the significant contribution of global semantic learning

to FlowEmbed’s improved performance. With the assistance

of the DPCNN model, global semantic learning captures

the long-range dependencies in byte sequences, leading to

embeddings with comprehensive sequential semantics. For

example, in the compilation optimization option identification

task, the accuracy rate of FlowEmbed-GS was only 66.1%.

In contrast, with the support of global semantic learning,

FlowEmbed’s accuracy surged to 82.0%.

V. DISCUSSION

In this paper, our goal is to develop a high-quality binary

function embedding model that can be applied to various

IoT-related downstream tasks. When applying, only an output

layer needs is added without changes to the model’s structure.
However, in this paper, we only evaluated the role of

control flow semantics in the model’s understanding of binary

function semantics, without involving other code semantic

information (such as data flow, abstract syntax trees, etc.). In

fact, utilizing richer semantic information allows the model to

better model the semantics of functions, resulting in higher-

quality embeddings, which is very beneficial for improving

performance. We leave this for future work.
It’s worth noting that for global semantic learning, we only

used DPCNN and byte sequences. This is because the com-

bination of the two has relatively low hardware requirements,

preventing excessive hardware demands when combined with

control flow semantic learning. In reality, by substituting more

complex models, the learning of global sequential information

is greatly beneficial. We leave this for future work.

VI. CONCLUSION

In this paper, we address unresolved challenges in the field

of function embedding learning. We present FlowEmbed, a
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TABLE IV
MAP SCORES OF HFS TASK.

Models PoolSize=100 PoolSize=500 PoolSize=1000 PoolSize=2000 PoolSize=3000 Avg
GCN 0.379 0.235 0.194 0.160 0.141 0.222

RGCN 0.488 0.324 0.282 0.244 0.225 0.313

Gemini 0.640 0.461 0.396 0.337 0.306 0.428

Order Matters 0.725 0.611 0.529 0.462 0.398 0.545

Asteria 0.806 0.646 0.558 0.505 0.479 0.599

FlowEmbed-CF 0.863 0.714 0.635 0.543 0.495 0.650

FlowEmbed-GS 0.753 0.565 0.476 0.403 0.363 0.512

FlowEmbed 0.902 0.777 0.703 0.627 0.579 0.718

binary function embedding model that employs RCFG and

byte sequences for a comprehensive semantic capture. RCFG,

representing control flow semantics, is learned through the

RGCN model. The model’s basic block embedding undergoes

pre-training with four distinct tasks. To ensure complete

semantic understanding, FlowEmbed integrates the DPCNN

model to process function byte sequences. We thoroughly

evaluate FlowEmbed against three pivotal IoT security tasks:

compilation optimization option identification, binary function

similarity analysis, and homologous function search. Results

confirm FlowEmbed’s superior efficacy compared to existing

models, reinforcing its potential as a go-to tool for diverse

IoT binary security analysis tasks.
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