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Third-party libraries (TPLs) are extensively utilized by developers to expedite the software development pro- 

cess and incorporate external functionalities. Nevertheless, insecure TPL reuse can lead to significant security 

risks. Existing methods, which involve extracting strings or conducting function matching, are employed to 

determine the presence of TPL code in the target binary. However, these methods often yield unsatisfactory 

results due to the recurrence of strings and the presence of numerous similar non-homologous functions. 

Furthermore, the variation in C/C++ binaries across different optimization options and architectures exac- 

erbates the problem. Additionally, existing approaches struggle to identify specific pieces of reused code in 

the target binary, complicating the detection of complex reuse relationships and impeding downstream tasks. 

And, we call this issue the poor interpretability of TPL detection results. 

In this article, we observe that TPL reuse typically involves not just isolated functions but also areas en- 

compassing several adjacent functions on the Function Call Graph (FCG). We introduce LibAM, a novel Area 

Matching framework that connects isolated functions into function areas on FCG and detects TPLs by com- 

paring the similarity of these function areas, significantly mitigating the impact of different optimization 

options and architectures. Furthermore, LibAM is the first approach capable of detecting the exact reuse ar- 

eas on FCG and offering substantial benefits for downstream tasks. To validate our approach, we compile 

the first TPL detection dataset for C/C++ binaries across various optimization options and architectures. Ex- 

perimental results demonstrate that LibAM outperforms all existing TPL detection methods and provides 

interpretable evidence for TPL detection results by identifying exact reuse areas. We also evaluate LibAM’s 

scalability on large-scale, real-world binaries in IoT firmware and generate a list of potential vulnerabilities 

for these devices. Our experiments indicate that the Area Matching framework performs exceptionally well 

in the TPL detection task and holds promise for other binary similarity analysis tasks. Last but not least, by 

analyzing the detection results of IoT firmware, we make several interesting findings, for instance, different 

target binaries always tend to reuse the same code area of TPL. The datasets and source code used in this 

article are available at https://github.com/Siyuan-Li201/LibAM . 
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 INTRODUCTION 

n order to accelerate the software development process and integrate external functionalities,

evelopers frequently rely on existing code from open-source code repositories and package man-

gement platforms such as Conan [ 1 ], Vcpkg [ 2 ], GitHub [ 3 ], and SourceForge [ 4 ]. These resources

re referred to as third-party libraries ( TPLs ) [ 5 ]. As the open-source software ( OSS ) ecosys-

em continues to expand, an ever-increasing number of software projects are being constructed

tilizing TPLs as their foundation. A recent report from Synopsys [ 6 ] indicates that a staggering

7% of audited software incorporates at least one TPL. 

However, the reliability of a large number of TPLs is difficult to guarantee, and security vul-

erabilities in one software project can easily propagate throughout the software supply chain,

hereby impacting other software projects. Among the audited software in Synopsys report [ 6 ],

1% contain at least one known security vulnerability. Moreover, developers who unintentionally

ntroduce improper TPLs may also violate open-source licensing regulations, resulting in legal

omplications. For instance, both Cisco and VMware have encountered significant legal issues due

o non-compliance with the stipulations set forth in the Linux license [ 7 , 8 ]. This underlines the

mportance of being vigilant when incorporating TPLs into software projects, in order to maintain

oth the security and legal integrity of the resulting applications. 

Generally speaking, TPL detection is a generic technology that detects code reuse relationships

etween software and can be applied to a large number of downstream tasks. On the one hand, both

evelopers and users are keen to identify and manage TPLs in their software to mitigate security

isks associated with TPL reuse [ 5 ]. Moreover, the detection of software plagiarism and open-

ource code infringement has gained significant attention from researchers in recent years [ 9 ].

n the other hand, TPL detection results can be utilized for 1-day vulnerability detection and

alware identification. For instance, Firmsec [ 10 ] employed TPL detection technology to uncover

umerous 1-day vulnerabilities in IoT firmware, demonstrating that the actual impact scope of

nown vulnerabilities detected via TPL detection technology often extends far beyond what is

eported in the CVE [ 11 ] or NVD [ 12 ] databases. This article focuses on the study of the generic

PL detection technique and evaluates the application of the vulnerability association task. 

In an effort to counteract the potential risks posed by unreliable TPLs, numerous researchers

ave focused on the development of effective TPL detection approaches for software applications.

riginally, the majority of research efforts concentrated on TPL detection in Java [ 13 –19 ]. Re-

ently, there has been a growing interest in TPL detection within C/C++ binaries [ 9 , 20 –25 ]. TPL

etection in C/C++ binaries presents even greater challenges, as binaries compiled using diverse

ptimization options and architectures exhibit significant differences [ 26 , 27 ]. In detail, Current

pproaches for TPL detection in C/C++ binaries typically involve gathering an extensive data-

ase of candidate TPLs and subsequently determining, which of these have been reused in the
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https://doi.org/10.1145/3625294


LibAM: An Area Matching Framework for Detecting Third-party Libraries in Binaries 52:3 

t  

w  

T  

2  

I  

n  

w  

o  

F  

c

 

c  

t  

e

 

r  

s  

r  

o  

i  

i  

r  

m  

d  

r  

r  

o  

b  

a  

b  

b  

i

 

w  

t  

r  

p  

b  

d  

i  

a  

r  

(  

w  

w

 

p  

i  
arget binary. These approaches can be broadly classified into two main categories: constant-based

orks [ 9 , 20 –23 ] and function similarity-based works [ 22 , 24 , 28 ]. Constant-based works identify

PL reuse within the target binary by extracting identical constant features, such as strings [ 20 ,

3 ], function names [ 9 ], and jump tables [ 21 ], from both the target binary and the candidate TPLs.

n contrast, function similarity-based works involve comparing all the functions of the target bi-

ary with those of the candidate TPLs. Subsequently, a predetermined threshold is set to establish

hether reuse has occurred. ISRD [ 22 ] addresses reuse detection by identifying more than half

f the similar functions in TPL, while LibDB [ 24 ] depends on over three connected functions on

CG to ascertain reuse. ModX [ 28 ] divides functions with the same functionality into a group by

lustering and sets a threshold for every group. 

However, it is essential to note that existing TPL detection technologies for C/C++ binary exhibit

ertain limitations. These limitations may hinder their performance and scalability in addressing

he various downstream tasks for which they are intended. We summarize the limitations of the

xisting works in the following three points: 

Firstly, existing TPL detection approaches are difficult to achieve both high accuracy and high

obustness across different optimization options and architectures. On the one hand, The features

elected by existing methods are not always working. Although constant-based approaches, which

ely on strings [ 20 , 23 ], function names [ 9 ], and jump tables [ 21 ], exhibit robustness in varying

ptimization options and architectures, these approaches may falter when the number of constants

s limited or when repeated constants appear in distinct binaries, leading to reduced performance

n detecting TPLs. In contrast, function similarity-based approaches can detect every instance of

euse by comparing all functions [ 22 , 24 , 28 ]. Unfortunately, the accuracy of isolated function

atching significantly declines as the number of similar functions increases and variations across

ifferent optimization options and architectures, compromising the accuracy of the TPL detection

esults. On the other hand, the detection granularity of existing approaches does not match the

euse granularity. Current techniques generally set a threshold value for the entire binary [ 24 , 28 ]

r source file [ 9 , 21 ], and when the number of matched features reaches this threshold, the entire

inary or source file is considered to be reused. However, In numerous cases, software reuses only

 portion of TPLs (Partial Reuse) [ 9 ]. As a result, some small-scale reuse instances may be missed

ecause the threshold is not met, and some libraries with a large number of similar features may

e mistakenly reported, causing false negatives and false positives, which are described in detail

n Section 2.2 . 

Secondly, the TPL detection results of current approaches are limited to the file-level granularity,

hich is insufficient for uncovering complex reuse relationships and interferes with downstream

asks. Complex reuse relationships may include partial reuse and pseudo-propagation reuse (the

elation between A and B in which both A and B reuse C), which is proposed in the previous

aper [ 21 ]. Existing approaches can only detect which TPLs are reused by the target software,

ut cannot further detect which part of the code in TPLs is actually reused. These coarse-grained

etection results are not applicable to the need for fine-grained results for downstream tasks. For

nstance, ModX [ 28 ] demonstrates that a large number of vulnerabilities are often concentrated in

 small portion of the software code. Users want to identify, which specific parts of the TPLs are

eused by the software for refined software management or to assess whether sensitive portions

vulnerabilities or malware) of the TPLs have been reused. Developing and refining such methods

ould significantly enhance the effectiveness of TPL detection and reduce the risks associated

ith the undetected reuse of vulnerabilities or malware. 

Thirdly, the datasets used in previous research for TPL detection tasks are in a single com-

iled environment [ 22 , 24 ], limiting the evaluation of the robustness and scalability in real scenar-

os. Even though existing works have gathered a substantial number of real-world binaries and
ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023. 
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anually labeled the ground truth to analyze their accuracy, the TPL detection datasets are lim-

ted to default optimization options and a single architecture. In many situations, target binaries

re compiled from varying architectures and optimization options (e.g., binaries in firmware), but

xisting works [ 22 , 24 ] only evaluate the accuracy of the function similarity matching task rather

han TPL detection task under different compilation environments. The absence of diverse datasets

ncreased the difficulty of appraising the scalability of TPL detection approaches. To tackle this

ssue, it is crucial to develop new datasets that encompass a broader range of optimization op-

ions and architectures, capturing the inherent variability and complexity of modern software

ystems. 

In this article, we introduce LibAM, a novel Area Matching framework that exhibits accuracy

nd robustness across various optimization options and architectures and can detect exact reuse

reas. We find that if one function is reused, its callee functions are also reused. Therefore, different

rom existing works that rely on function granularity matching, we leverage the function call

elationships to connect isolated functions into areas on FCG and compare the similarity of these

reas rather than single functions to judge reuse. Function inlining, function call deletion, and

ther changes from the compiler that are fatal to isolated function matching, have little effect on

he graph similarity of FCGs. There are two primary modules in LibAM: Area Generation and Area

omparison. This innovative framework can be effectively employed for two tasks: TPL detection

nd Reuse area detection. The former aims to detect which TPLs are reused by the target binary,

nd the latter aims to detect which functions (exact reuse areas) of the target binary are from TPLs.

ibAM takes target binaries and TPL binaries as inputs, and finally outputs which TPLs are reused

n target binaries and a list of reused functions. Therefore, LibAM can provide specific reuse areas

or each TPL detection result, thus providing interpretability and being used to detect complex

euse relationships. 

In detail, LibAM commences with conducting a comprehensive comparison of all target func-

ions and TPL functions through a vector-searching technique. Subsequently, the anchor extension

hase enables the connection of previously isolated function nodes into areas on the Function

all Graph ( FCG ). Finally, LibAM assesses whether a particular area has been reused by cal-

ulating the similarity of function areas. LibAM outputs candidate TPLs for the TPL detection

ask while generating a reused function name list for the Reuse area detection task. Note that

he novel area detection task can help analyze complex reuse relationships, and we obtain two

nteresting findings based on this in Section 4.8 . In addition, we show that by detecting exact

euse areas, vulnerabilities can be associated by matching vulnerable functions rather than by

atching vulnerable TPLs, which filters false positives for vulnerability associations caused by

artial reuse. 

We evaluate LibAM and the state-of-the-art ( SOTA ) works including LibDX, B2SFinder, ISRD

nd LibDB using the public dataset from a previous article [ 9 ] as well as the first dataset for differ-

nt optimization options and architectures built by ourselves. Our experiments show that LibAM

utperforms all existing TPL detection works and beats the SOTA work [ 23 ] by an average of 24%

n precision and 36% in recall even across different optimization options and architectures. More-

ver, compared to previous methods, which failed in the exact reuse area detection task, LibAM

as demonstrated the feasibility of doing so with 0.99 precision and 0.844 recall. We further eval-

ate the ability of area matching to detect the exact reuse area for complicated reuse relationships

nd downstream tasks by detecting reuse relationships in large-scale IoT firmware and associat-

ng vulnerabilities introduced due to TPL. ModX [ 28 ] shows that a large number of vulnerabilities

re often in a small part of the software code. By detecting specific reuse areas, we can deter-

ine whether vulnerable functions are reused, thus avoiding false vulnerability associations due
o file-level reuse detection. 

CM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023. 
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Fig. 1. Application scenarios of LibAM. LibAM takes target binaries and TPL binaries as inputs. Target bina- 

ries are extracted from firmware and software, while TPL binaries are collected from package management 

platforms or manually compiled. The output of LibAM is the TPLs and reuse areas of the target binaries (in 

yellow in the figure), which can be further associated with vulnerabilities. 
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We summarize our main contributions below: 

—We propose a novel framework LibAM, which represents a significant improvement over

all existing TPL detection works both in the public real-world dataset and in different op-

timization options or architectures. 

—To the best of our knowledge, this is the first work to attempt to detect the exact reuse area

which is beneficial for downstream tasks. 

—We build the first dataset in different optimization options and architectures for TPL de-

tection, which allows us to evaluate the robustness of existing works. 

—We evaluated the scalability of LibAM using a large-scale real-world IoT firmware dataset

and generate potential firmware vulnerabilities to show one application of LibAM. 

The remainder of the article is as follows: Section 2 introduces the problem description, mo-

ivation and notations of this article. Section 3 describes the design details of LibAM. Section 4

ompares LibAM with existing TPL detection techniques. Section 5 discusses the results and lim-

tations of LibAM. Section 6 presents related work. 

 PRELIMINARY 

.1 Problem Description 

PL detection takes the target binaries and widely used TPL binaries as input, and attempts to

etect which TPLs are reused by the target binary. We aim to design a generic approach that can

olve the TPL detection task for C/C+ binaries in multiple scenarios. 

Firstly, we want to detect TPLs in target binaries that come from both software and firmware as

n Figure 1 . Binaries in software tend to be compiled in a single architecture (e.g., B2SFinder [ 21 ]

nly detects PE files under Windows). However, binaries in firmware tend to come from different

rchitectures and raise the demands for TPL detection technology. Note that both binaries in soft-

are and firmware are stripped and we cannot extract function names by traditional tools like nm .

ur proposed method is designed to address these challenges by enabling the detection of TPLs

n target binaries from various optimization and architectures. 

Secondly, our approach aims to detect TPLs that are reused through dynamic links, static links,

nd direct copies. For dynamic links, target software or firmware retains dynamic link library files,

uch as .dll or .so files, within the file directory. We build a TPL database consisting of commonly

sed dynamic link library files and utilize the dynamic link library files in the target software or

rmware as the target binary for detection purposes. For static links or direct copies, intricate
ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023. 
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euse relationships present challenges for TPL detection. To overcome this, we gather binaries

rom prevalent C/C++ projects to create the TPL database, subsequently detecting which sections

f code in the target binaries originate from these TPL binaries. It is worth noting that these target

inaries may make minor modifications to the reused TPL, for example, some binaries slightly

odify the reused code to remove string-print instructions without changing the semantics. As in

he case of minizip , which removes the string-print instructions in the BZ2 _ Block S ort function of

zip2 . We aim at identifing similar areas from massively different codes and overcome minor mod-

fication differences. For drastic changes that severely affect the semantics, it is a serious challenge

hether code with large changes is considered reused and how to recognize them even for hu-

ans, which is outside our dataset and our goals. We only consider minor reusable code changes

n the public dataset from previous work [ 22 ]. 

Thirdly, we aim at detecting both reused TPLs and reused code areas. Prior work on TPL de-

ection could not ascertain which portions of code in TPLs were reused, a limitation we term as

oor interpretability of TPL results. Research [ 9 , 21 ] has demonstrated that a large number of

PL reuses are partial, and file-level TPL detection results cannot determine if sensitive parts (e.g.,

ulnerable code or malware) are reused. This limitation obstructs numerous downstream tasks,

ncluding 1-day vulnerability correlation, malware detection, software plagiarism detection, and

ore. Our approach tends to identify which sections of code in the target binary reuse specific

arts of the code in the TPL, providing interpretable evidence for the TPL detection results. Ad-

itionally, since function names in TPL binaries are accessible, by gathering patch information

rom the NVD, we can detect if vulnerable functions are present in the reuse areas by comparing

he reused TPL function names with vulnerability names, even when the function names in tar-

et binaries are stripped. For the TPL detection task, we collect widely reused TPL binaries and

etermine which of them are reused. For the Area detection task, we pinpoint which functions of

he target binaries originate from TPLs, and we can obtain the reused function names since the

orresponding function names in TPLs are readily available. 

.2 Motivation 

n light of the limitations of existing TPL detection methods, our primary objective is to develop a

ovel TPL detection framework that demonstrates accuracy and robustness across a diverse range

f optimization options and architectures. Furthermore, our proposed approach aims to detect ex-

ct reuse areas, enabling more precise and fine-grained analysis of TPL reuse in software systems.

o achieve this, we draw upon insights from the patterns of function reuse observed in real-world

oftware applications in ISRD [ 22 ]. 

We have found that when a particular function is reused, its callee functions are also frequently

eused. As illustrated in Figure 2 , for example, since Minizip reuses the function BZ2_bzCompress

rom Bzip2 , the callee functions of BZ2_bzCompress are also reused. This observation suggests that

everaging function call relationships may provide a more accurate and robust approach to TPL

etection compared to existing methods, which primarily rely on isolated function granularity

atching. 

Besides, there are many partial reuses in the actual scenario, and the reuse proportion is much

maller than file-level TPL. In Figure 3 , due to the fact that snkfile2k is mostly reused as test binaries

ithin the project, we have shown the reuse proportion of 41 reuse relationships in Dataset_ISRD

A TPL dataset from previous work [ 22 ], which is described in detail in Section 4.1 ), except for

nkfile2k related reuse. It can be seen that over half of the reuse relationships only reuse less than

alf of the functions in TPLs, and these partial reuses may have a serious impact on the TPL

etection results obtained by matching isolated functions. 
CM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023. 
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Fig. 2. A motivation example for LibAM. The upper part depicts a portion of the FCG for Minizip , while the 

lower part presents a portion of the FCG for Bzip2 . Each block represents a function, with yellow blocks 

indicating the reused TPL API functions and gray blocks denoting functions that are reused alongside the 

API functions. 

Fig. 3. Reuse proportion in Dataset_ISRD. We manually analyzed the reuse areas of each reuse relationship 

in Dataset_ISRD and counted the number of reused TPL functions and the total number of TPL functions. 

The quotient of the two values is the reuse proportion. 
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Building on these insights, we propose a novel approach that connects isolated functions into

reas on the FCG based on their call relationships and compares the similarity of these areas, rather

han single functions, to determine reuse. Unlike LibDB [ 24 ], which uses a simple rule that TPL

ith three connected functions on FCG are reused, we want to compare the structural similarity

nd node alignment of the function areas on FCG. We found an overlapping phenomenon in LibDB,

hich is described in detail in Section 3.2.2 , and we propose an Anchor Alignment algorithm to

olve the overlapping problem of LibDB by comparing the structural similarity of areas through

NN and subjected to the RANSAC algorithm [ 29 ] in the field of image alignment to generate a

ne-to-one correspondence of area node correspondence. 

Moreover, LibDB [ 24 ] shows that there may be many false negatives and false positives during

he function-matching phase. However, the Area Matching framework can effectively revise these

istakes, thus mitigating the impact of varying optimization options and architectures on TPL

etection accuracy. What’s more, we seek to evaluate the ability of area matching to detect the
ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023. 
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Fig. 4. The workflow of LibAM. We mark the matched function as gray on the FCG. After the Area Gen- 

eration module, we represent the areas connected by anchors as dashed boxes. After the Area Comparison 

module, the reused functions in the correct area are marked as yellow. 
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xact reuse area for complex reuse relationships and its implications for downstream tasks, such

s vulnerability analysis and software management. For instance, ModX [ 28 ] demonstrates that

 large number of vulnerabilities are often concentrated in a small portion of the software code.

y detecting specific reuse areas, our approach can determine whether vulnerable functions have

een reused, thereby avoiding false vulnerability associations that may arise from file-level reuse

etection. 

.3 Definition 

o ensure a more coherent presentation and facilitate comprehension, this section focuses on stan-

ardizing the terminology employed throughout this article. The detected binary extracted from

oftware or firmware is called target binary while the binary in the TPL database is denoted as

he TPL binary . Additionally, the Control Flow Graph ( CFG ) is abbreviated as CFG and the

unction Call Graph as FCG . Furthermore, the Attributed Control Flow Graph ( ACFG ), which

s a concept leveraged by Gemini [ 30 ], is designated as ACFG . Finally, we define the Anchor and

euse Area to facilitate a clearer explanation of the algorithm. 

2.3.1 Anchor. In the process of generating and comparing areas, our initial step involves match-

ng functions in the target binary and the TPL binaries by employing a function similarity calcula-

ion method. Functions that are successfully matched are termed anchors , while a pair of matched

unctions (one originating from the target binary and the other from the TPL binary) are referred

o as an anchor pair . As illustrated in Figure 4 , the gray nodes on both the target FCG and TPL

CG, following the Anchor Detection phase, signify anchors. 

Formally, let F target represent the set of functions extracted from the target binary, and F TPL 

enote the set of functions from the TPL binary. The function similarity calculation method is

enoted as Sim ( f i , f j ), where f i ∈ F target , f j ∈ F TPL . An anchor a is a function in F target that suc-

essfully matches with at least one function b in F TPL , according to the similarity threshold θs : 

a ∈ F target , ∃b ∈ F TPL : Sim (a, b) ≥ θs . (1)
CM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023. 
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An anchor pair (a, b) is formed by an anchor a and its matching function b from F TPL . 

2.3.2 Area. We connect the isolated anchors and all their sub-functions on FCG to generate a

unction list, which we term the function area . In essence, the function area is a node list that

ncompasses all nodes reachable from a selected anchor node on the FCG. It is essential to note

hat we generate two distinct areas for each anchor pair: one being the target area and the other

he TPL area . 

Given an anchor pair (a, b), the target area A (a) and candidate area A (b ) are formally defined

s 

A (a) = { f ∈ F target | there exists a path from a to f in FCG target } , (2)

A (b ) = { f ∈ F candidate | there exists a path from b to f in FCG candidate } . (3)

Our approach compares function areas, rather than isolated functions, to detect TPLs more ef-

ectively. The final list of detected reused functions is referred to as the reuse area . In Figure 4 ,

he functions enclosed within the dashed box constitute the areas. 

 METHODOLOGY 

.1 Overview 

e propose a novel Area Matching framework, LibAM, for detecting both the TPLs and exact reuse

reas in the target binary. The workflow of LibAM, presented in Figure 4 , consists of two modules:

rea Generation (Section 3.2 ), and Area Comparison (Section 3.3 ). We take a target binary and

PL binaries as inputs, and LibAM generates a reused TPL list and a reused function list (reuse

rea) for the target binary after detection. 

In the Area Generation module, we create several areas for both the target binary and TPL bi-

aries. The initial step involves extracting functions and FCGs from the target binary and TPL

inaries using IDA Pro [ 31 ]. Then, we conduct a comparison of the functions. Functions that are

uccessfully matched are considered anchors. To expedite the function-matching process, we em-

loy annoy [ 32 ], a high-speed vector searching engine. Subsequently, we establish connections

etween anchors and their callee functions on FCG, generating a function area for each anchor. It

s important to note that function areas are generated in pairs: one area corresponds to the matched

unctions within the target binary and the other is associated with the corresponding functions in

he TPL binaries. 

In the Area Comparison module, we calculate the similarity between each target area and its

orresponding TPL area to determine whether it constitutes a reuse area. The similarity is calcu-

ated based on two factors: structural similarity and alignment length. We employ Embedded-GNN

Section 3.3.1 ) to calculate the structural similarity and our Anchor Alignment algorithm

Section 3.3.2 ) to compute the alignment length. Ultimately, we ascertain whether an area is gen-

inely reused by considering these two factors. 

Finally, after detecting the reuse areas between the target binary and ever y TPL binar y, LibAM

enerates a reused TPL list for the TPL detection task and a reused function list for the Area

etection task. Although the functions in the target binary are without names, LibAM can use the

orresponding function names in TPLs to generate the reused function list. 

.2 Area Generation 

n this section, our target is to identify similar functions between the target binary and the

PL binaries by employing function similarity calculation techniques and subsequently generate
ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023. 
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Fig. 5. Network structure of Structure2Vec. We input the function ACFGs from both target binaries and TPL 

binaries into the GNN. After T iterations, output vectors are obtained and vector similarity is calculated using 

cosine similarity. In the figure, the parameters of the two GNNs are shared, forming a Siamese network. 
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reas for these functions. First, we carry out the anchor detection phase to compare the functions.

ollowing this, we conduct an anchor extension phase to generate areas for each of the identified

nchors. 

3.2.1 Anchor Detection. Existing works [ 22 , 24 ] directly filter these matched functions as reuse

etection results. Although function similarity matching can distinguish homologous functions

rom non-homologous functions, its accuracy degrades severely with an increasing number of

on-homologous similar functions, as well as in different optimization options and architectures.

nstead, we propose taking the matched functions as anchors and connecting the isolated functions

nto areas on FCG for further comparison. 

As same to previous works [ 24 , 28 ], we choose the improved Gemini in LibDB [ 24 ] as our func-

ion similarity calculation approach for several reasons. Firstly, previous TPL detection works,

uch as LibDB [ 24 ] and ModX [ 28 ], have utilized Gemini for matching tasks, which is a fast and

calable method. Besides, LibAM aims to detect TPLs by comparing areas on FCG, and we focus on

he improvement brought by area similarity compared to function similarity. Therefore, we leave

he enhancement of the new function similarity matching tool itself for future work. Finally, our

xperiments have demonstrated that with the addition of area comparison framework, Gemini can

eliver very good results and it is easy to replace Gemini with new function similarity calculation

orks to obtain more suitable anchors for specific scenarios in the future. 

As in LibDB [ 24 ], we first extract a 7-dimensional vector for each basic block by calculating

 types of statistical information: the number of the string constants, numeric constants, trans-

er instructions, call instructions, all instructions, arithmetic Instructions, and offspring numbers.

hen, we use each 7-dimensional vector as a node on CFG to transform the function into an ACFG,

hich is generated for each function that has block numbers above 5 and instruction numbers

bove 10 in both the target binary and TPL binaries. Finally, we input the ACFG into the Struc-

ure2vec network to obtain the vector representation of the function. The structure of the GNN

etwork is as in Figure 5 . We utilize Dataset_OSS in Section 4.1 to train the Siamese architecture

f two Structure2vec networks with shared parameters and optimize it using triplet cosine loss of

quation ( 4 ). Further details can be found in LibDB [ 24 ]. 

Loss = 
1 

m 

m ∑ 

0 

max ( cos ( a, n ) − cos ( a, p ) + ϵ, 0 ) . (4)

In Equation ( 4 ), m represents the batch size during training, c os (a, p ) represents the cosine sim-

larity between binary function vectors of different compilation options or architectures that are
CM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023. 
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Fig. 6. Schematic diagram of the Anchor Extension phase. 
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ompiled from the same source code, and cos (a, n) represents the cosine similarity between func-

ion vectors of different source codes. ϵ is a constant above 0, here we choose 0.2 as in LibDB. 

Finally, we calculate the cosine similarity between all function vectors in the target binary and

PLs. Based on our experiment, we set a reasonable threshold of 0.72, which can best distinguish

ositive samples from negative samples in Dataset_OSS. When the cosine similarity between two

unctions exceeds 0.72, we consider these functions as anchors. Besides, we use the annoy en-

ine [ 32 ] to accelerate vector searching. TPL’s function embedding process can be performed

ffline and stores all function vectors in a vector database. For each function of the target bi-

ary, we use annoy to retrieve it in the vector database for a fast function comparison. As same

n LibDB [ 24 ], we filter top-200 TPLs for each target binary and top-100 TPL functions for each

arget function to further accelerate the vector searching phase. The details of thresholds are in

ection 4 . 

3.2.2 Anchor Extension. After the anchor detection phase, we generate an anchor pair list,

here each anchor pair consists of a function in the target FCG (target anchor) and the corre-

ponding function in the TPL FCG (TPL anchor). In other words, the anchor list represents the

atched nodes between the two FCGs. The goal of this phase is to generate an area for each

nchor. 

The existing works take anchors directly as the result of TPL detection, but the results are not

deal due to a significant number of false positives and false negatives in anchors [ 24 ]. To address

his issue, LibAM aims to use the function call relationships to link isolated function nodes into

reas on FCG. Our observation indicates that when a function is reused in the target binary, its

allee functions are reused together. 

Based on this insight, in Figure 6 , we treat the anchor and all callee functions as an area and

ompare the whole area to detect TPLs. The Area Comparison module takes function pairs as input

nd generates an area pair including a target area and a TPL area for each function pair. Note that

he target area is a function list without function names while the TPL area is a function list with

unction names. After the Area Comparison module, we can get a reused function name list for

he target binary. 

.3 Area Comparison 

fter obtaining two areas of the anchor pair, we aim to compare the similarity of the two areas

o determine whether they are reuse areas. We calculate the area similarity by using two factors:

he structural similarity S and the alignment length factor L. We set two separate thresholds for
ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023. 
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Fig. 7. The architecture of Embedded-GNN. The GNN is a Structure2vec network, which is the same as in 

Figure 5 . We use the Function Vector for anchor detection in Section 3.1 and use the Area Vector to calculate 

the Area structure score in Section 3.3.1 . 
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hem and only when both the structural similarity and the alignment length factor exceed the

hresholds, we consider the areas as actual reuse areas. We will now describe the details of the two

actors. The details of thresholds are in Section 4 . 

3.3.1 Structural Similarity. We leverage an Embedded-GNN to generate vectors for areas and

egard the vector cosine similarity as structural similarity S . The GNN is the same Structure2vec

etwork as in Section 3.2.1 . Note that the vector of the function node in the area is just the vector

n Anchor Detection, as in Figure 7 . 

Structure2vec operates on the principle of leveraging graphical model inference methodologies,

here features associated with individual vertices, represented by x i , undergo a systematic ag-

regation process that adheres to the underlying graph topology. After multiple rounds of this

ecursive procedure, an innovative feature representation (also known as an embedding) is gener-

ted for each vertex, effectively capturing the complex interdependencies among vertex features

s well as the intrinsic properties of the graph structure. The training procedure can be broadly

ivided into three main steps: initialization, iterative neighborhood aggregation, and optimization

sing a supervised learning objective. 

Firstly, we initialize the node embeddings using a node feature matrix. This matrix contains

nitial feature vectors for all nodes in the graph. The initial embeddings serve as a starting point

or the iterative neighborhood aggregation process that follows. 

Then, at the heart of Structure2Vec lies the iterative neighborhood aggregation process, which

pdates node embeddings based on the information aggregated from neighboring nodes. This is

chieved through a message-passing framework that recursively updates node embeddings. Dur-

ng each iteration, nodes aggregate information from their neighbors by using a neural network-

ased aggregation function, and their embeddings are updated accordingly. The aggregation pro-

ess can be formally described as 

μi 
(t ) = AG G RE G AT E ( μ j 

(t−1 ) : j ∈ N (i ) ), (5)

here μi 
(t ) is the updated embedding of node i at iteration t , N (i ) denotes the set of neighbors

f node i , and AGGREGATE is the neural network-based function as in Figure 5 . This process is

epeated for a fixed number of iterations T, culminating in the final embeddings μi 
(T ) : i ∈ V as

he area presentation. 

Finally, Structure2Vec employs a supervised learning objective that maximizes the similarity

etween embeddings of homologous areas. In detail, we initially selected all the binary FCGs

n Dataset_OSS and sampled areas on those FCGs. We selected the nodes with more than five
CM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023. 
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Fig. 8. 8(a) is the target FCG (Above) and the TPL FCG (Below) before Anchor Alignment while 8(b) is after 

that. The gray nodes are anchors and the yellow nodes are aligned nodes. The dotted lines are the matched 

relations of anchors. 
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djacent nodes on FCG as the initial nodes for each area. For training the GNN for FCG embed-

ing, we treated the homologous areas as positive samples and utilized the areas obtained from

on-homologous FCG sampling as negative samples. 

After that, we leveraged the trained reuse area embedding model to generate vector represen-

ation for function areas after the Area Generation module. Similarly, we regard the vector cosine

imilarity between the target area and TPL area as their structural similarity score S . Two areas

re considered structurally similar if S is greater than a threshold value of 0.8. The threshold value

s set in Section 4 . 

3.3.2 Anchor Alignment. After calculating structural similarity, numerous non-homologous

unctions with similar structures and similar areas still exist, leading to false positives and false

egatives in TPL detection results. Considering the importance of one-to-one matching of nodes

etween two areas in the graph-matching domain, we explore the potential for improved TPL de-

ection by considering the number of matched anchor pairs. Intuitively, an area is more likely to be

 reused area if it has a higher number of matched anchor pairs. We refer to the approach in previ-

us work LibDB [ 24 ], where they determine the reuse by detecting whether the matched nodes on

he FCG have three common edges. However, LibDB [ 24 ] suffers from an overlapping problem,

hich is discussed in detail below. In order to solve the overlapping problem and compute a more

ccurate number of aligned nodes between areas, we propose an Anchor Alignment algorithm to

ompute the similarity by computing the maximum length of a one-to-one alignment relation of

atched nodes in two areas. 

One of the challenges encountered is the overlapping phenomenon. Because all function pairs

hose similarity is larger than the threshold are seen as anchor pairs during the anchor detection

hase, one target function may be associated with multiple candidate TPL functions while other

arget functions may only be related to one candidate node, which is called overlapping . For

xample, in Figure 8 (a), nodes A and C on the TPL FCG have three matched nodes on the Target

CG. To address this issue, a naive approach would be to enumerate all matching combinations

o obtain all groups of aligned areas. However, this approach is computationally intensive and

ime-consuming due to the vast number of possible combinations. 

To tackle this problem, we propose the Anchor Alignment algorithm, which calculates the

ongest list of anchor pairs without overlapping. We define the length of the longest anchor pair

ist as the alignment length . In Figure 8 , the ideal list is [(1, A), (2, B), (3, C), (4, D)] and the

lignment length is 4. 

We refer to the RANSAC algorithm [ 29 ] in the field of Image Alignment [ 33 , 34 ], which aims

o find the mapping relationships of points in two images. Nevertheless, Anchor Alignment is

ifferent from Image Alignment in that we do not calculate the Homograph Matrix [ 35 ] (a 3*3
ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023. 



52:14 S. Li et al. 

m  

c  

n  

a  

m

 

m  

i  

A  

a  

A  

t

A

n  

o  

n  

i

A

atrix used to rotate all points in one image to another), but the alignment length. The pseudo-

ode for Anchor Alignment is in Algorithm 1 . The function дe t _ de s ce ndants is to get all descendant

odes. We use the function random.sample in Python to get the random anchor from nodes in the

rea. The function дe t _ re late d _ tpl aims to get the anchor pair of target anchor a ta r _ ch ild with the

atched TPL anchor in A tpl _ de s c that has the most descendant nodes. 

First, every candidate TPL from the Area Generation module has an anchor pair list A, and its

embers are anchor pairs that correspond to the dashed line in Figure 8 . The anchor pair list

n Figure 8 is [(5, A), (1, A), (6, A), (6, C), (3, C), (4, C), (4, D)]. Then, we perform the Anchor

lignment algorithm for each anchor pair in A. We take the anchor pair as the current generation

nd iteratively search for the next generation anchor pair and use it as the new current generation.

s in lines 15-28 in Algorithm 1 , we randomly select an anchor pair ( a _ tar , a _ tpl ) in the area of

he current generation as the 

LGORITHM 1 : Anchor Alignment 

Input : anchor pair (a tar , a tpl ), anchor pair list A, target FCG д tar and TPL FCG д tpl 

Output : the max number of aligned anchor pairs l max 

1 Function AnchorAlignment ( a tar , a tpl , A, д tar , д tpl ): 

2 l max = 0 , n = 0 ; 

3 while T rue do 

4 l = Aliдnment ( a tar , a tpl , A, д tar , д tpl ); 

5 if l > l max then 

6 l max = l , n = 0 ; 

7 else 

8 n + = 1 ; 

9 if n > = 100 then 

10 b re ak ; 

11 return l max ; 

12 end 

13 Function Alignment ( a tar , a tpl , A, д tar , д tpl ): 

14 N = 0 ; 

15 A tar _ de s c = дe t _ de s ce ndants ( a tar , д tar ); 

16 A tpl _ de s c = дe t _ de s ce ndants ( a tpl , д tpl ); 

17 a ta r _ ch ild = random.sample ( A tar _ de s c , 1 ); 

18 a tp l _ c hild = дe t _ re late d _ tpl ( a ta r _ ch ild , A, A tpl _ de s c ); 

19 if is _ not _ emp ty ( a tp l _ c hild ) then 

20 N + = 1 +Aliдnment ( a ta r _ ch ild , a tp l _ c hild , A, д tar , д tpl ); 

21 else 

22 return N ; 

23 end 

24 return N ; 

25 end 

ext generation and make sure they are not overlapped. For instance, (3, C) and (4, D) are not

verlapped while (3, C) and (4, C) are overlapped. Next, we record the alignment length l of the

ew list if l > l max and re-select iteratively. Finally, we stop the iteration when the number of

terations n reached 100 without l max updating. 
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After alignment, we obtain the longest alignment length for each area. In Figure 8 , the ideal list

s [ (1, A), (3, C), (4, D)]. Since node (2, B) misses in the anchor detection phase, the final longest

lignment length is 3. However, LibAM is robust to misses and false positives of function matching,

hich does not affect the final result too much. We then set the threshold n and judge to reuse

hen the alignment length L is more than n. Based on the evaluation in Section 4 , we set n = 3 .

y employing the Anchor Alignment algorithm, we can effectively address the overlapping issue,

ontributing to a more accurate and efficient TPL detection process. 

Finally, we consider areas with anchor function similarity, area structural similarity, and area

lignment length all above the thresholds as reuse areas. We record the list of reused TPLs for the

PL detection task and the list of reused functions for the Area detection task. 

.4 Optimization Strategies 

oreover, we discuss the optimization strategies for both the TPL detection and Area detection

asks. Our aim is to make LibAM lightweight and efficient while maintaining its accuracy and

obustness. We incorporate various techniques, such as the Annoy vector search engine, to speed

p the comparison of functions and areas, as well as employ a speedup strategy for the anchor

lignment algorithm. By doing so, LibAM can efficiently handle situations where the size and

umber of areas are huge. These optimizations are detailed below: 

For the TPL detection task, in each combination of target and TPL binaries, we iteratively select

 pair of candidate areas randomly to compute their structural similarity and alignment length.

nce both the structural similarity (S) and alignment length (A) of the candidate area surpass the

esignated thresholds, we can conclude that the target binary reuses the TPL and terminates the

oop. Then, we move on to the next combination. This strategy significantly reduces the compu-

ational overhead and speeds up the TPL detection process. No matter how large the area is, once

he alignment length exceeds the threshold, LibAM can return the result. 

For the area detection task, we only perform area detection for the detected tuples (target bi-

ar y, TPL binar y) after the TPL detection task. We begin by ranking the areas generated during

he Area Generation module in descending order, based on their size. When a larger area is iden-

ified as reused, any smaller areas contained within it are not repeatedly computed, which further

voids the impact of an excessive number of areas. Moreover, if an area matches with multiple ar-

as simultaneously, we select the one with the highest alignment length and structural similarity

core as the final reused area. This approach not only reduces redundancy in computation but also

nsures a more accurate area detection result. 

 EVALUATION 

n this section, we elaborate on the evaluation process of our proposed approach, LibAM, and

iscuss its accuracy in various tasks as compared to SOTA works. We provide a comprehensive

nalysis, including an investigation into the bad cases of existing works, and identify the reasons

or their shortcomings. Before that, we describe our experimental setup, the dataset used, and the

ools employed for disassembly and coding. 

In the experiments, we aim to answer the following research questions: 

RQ1: How does LibAM perform in the TPL detection task in the public real-world dataset

compared to other works? 

RQ2: How does LibAM perform in the Area detection task in the public real-world dataset

compared to other works? 0 

RQ3: Is LibAM robust in detecting TPLs in different optimization options and architectures?
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RQ4: How do the individual components of LibAM impact the final accuracy? 

RQ5: How efficient is LibAM compared to other works? 

RQ6: How does LibAM perform in detecting TPLs in large-scale real-world firmware? 

First, let us describe the experimental setup and the dataset used for evaluation. We employed a

igh-accuracy computing environment to ensure accurate and efficiency evaluation. The system

uns on Ubuntu 22.04 and is equipped with an Intel Xeon 128-core 3.0 GHz CPU, which includes

yperthreading capabilities. In addition, it has 1TB of RAM and two NVIDIA V100 32 GB GPUs.

his setup guarantees ample resources for the execution and comparison of different algorithms.

n fact, LibAM is lightweight and can even run on machines without a GPU. For the disassembly

f binaries, we used IDA Pro 6.8, a widely recognized disassembler and debugger. IDA Pro 6.8

as extensive capabilities to reverse-engineer and analyze binary files, making it an ideal choice

or our evaluation process. The code for our proposed method is primarily written in Python 3.6,

ith the IDAPython code being in Python 2.7. This choice of languages allows us to leverage the

xtensive library support and ease of use that Python offers. 

In this evaluation section, we assess the accuracy of our proposed approach, LibAM, by using

idely-accepted metrics, namely Precision (P), Recall (R), and F1 score (F1). These metrics are suit-

ble for determining the accuracy of our approach in detecting TPLs and reuse areas. In addition,

e performed statistical analysis of the results using violin plots and CDF (Cumulative Distribution

iagram). In detail, T P presents the number of reused TPLs that are correctly detected as reused

hile T N presents the number of unused TPLs that are correctly detected as unused. Besides, FN 

resents the number of reused TPLs that are incorrectly detected as unused while FP presents

he number of unused TPLs that are incorrectly detected as reused. Moreover, the equations of

recision, Recall, and F1 score are as follows: 

P r e cis ion = 
T P 

T P + FP 
, (6)

Recall = 
T P 

T P + FN 

, (7)

F1 = 2 · P r e cis ion · Re call 
P r e cis ion + Re call 

. (8)

To maintain consistency and facilitate comparison, we preserve the vector dimension of both

he function and the FCG at the same level as in Gemini [ 30 ], with a dimensionality of 64. This

llows for a fair comparison between the accuracy of our approach and other Gemini-based works.

To identify anchor functions and assess the structural similarity of the FCG, we apply opti-

al threshold values derived from the validation dataset in Dataset-I, which are 0.72 and 0.8, re-

pectively. These threshold values were determined through experimentation and analysis on the

alidation dataset to achieve the best balance between precision and recall. 

As shown in Figure 9 , we randomly select a subset consisting of 400 function pairs and FCG pairs

rom Dataset-I to provide a representative sample for our evaluation. The selected thresholds, 0.72

nd 0.8, effectively distinguish between positive (homologous) and negative (non-homologous)

amples. This indicates that the threshold values are adept at identifying homologous code while

inimizing false positives and false negatives. 

Furthermore, we set the alignment length threshold based on the number of common edges

mployed in LibDB [ 24 ] with a value of 3, thus facilitating a comparison of the effectiveness of the

nchor Alignment algorithm compared with the simple common edge filtering rule in LibDB [ 24 ].

his threshold serves as an additional criterion to ensure that the identified reusable TPLs have a
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Fig. 9. The similarity score of 400 random function pairs (Left) and area pairs (Right). 

Table 1. Dataset Scale 

Dataset Binaries Target Binaries TPLs Contents Applications 

Dataset_OSS 22,100 – – cross arch and opti software for traning 

Dataset_ISRD 85 17 85 real-world software for TPL detection

Dataset_ExtISRD 289 204 85 cross arch and opti software for TPL detection

Dataset_FW 12,915 12,699 216 real-world firmware for TPL detection 
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ufficient level of similarity. We further evaluated the impact of different values of this threshold

n LibAM in Section 4.6 . 

.1 Dataset 

n order to comprehensively evaluate the accuracy of LibAM in different environments, we lever-

ged one independent dataset for training our model and three additional datasets for evaluation

urposes. The details of these datasets are presented in Table 1 . 

Dataset_OSS: To develop a rich and diverse dataset for training our function embedding model

nd Embedded-GNN network, we invested significant time and effort into crawling 260 commonly

sed open-source projects from Github [ 3 ] and SourceForge [ 4 ]. We manually compiled these

rojects into 22,100 binaries, encompassing three architectures (ARM, x86, x64) and four opti-

ization options (O0, O1, O2, O3). This extensive dataset ensures that our model is well-trained

nd capable of handling various real-world scenarios. We divide it into a training set, validation

et, and testing set in a ratio of 8:1:1. 

Dataset_ISRD: To evaluate the ability of LibAM on existing public real-world datasets, we

everage a real-world reuse dataset used by ISRD [ 22 ]. The dataset contains 85 binaries from 24 pop-

lar open-source projects across various domains, compiled with default optimization options in

64, and includes 74 real partial reuses. This dataset is the only complete public TPL detection

ataset, as we know. While another TPL dataset used in LibDB [ 24 ] only contains a ground truth

le without corresponding binaries. Even though these target binaries originate from the Fedo-

aLib dataset [ 24 ], their names and version numbers in the ground truth file do not correspond to

hose in the FedoraLib dataset, posing difficulties in utilizing this dataset for TPL detection. (for ex-

mple, vorbis in ground truth file while there are many confused binaries like libsox_fmt_vorbis.so ,

ibvorbis.so.0.4.6 , libvorbisenc.so.2.0.9 and so on in FedoraLib.) 
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Dataset_ExtISRD: Recognizing the limitations of existing TPL detection datasets, we expanded

he ISRD dataset by manually compiling binaries for three architectures (arm, x86, x64) and four

ptimization options (O0, O1, O2, O3). This extended dataset, with 289 binaries and 477 real partial

euses, enables us to assess the accuracy of LibAM under a broader range of conditions, thus

roviding a more comprehensive evaluation of its capabilities. 

Dataset_FW: To evaluate LibAM’s ability to tackle large-scale firmware TPL detection tasks,

e collected 167 firmware from 10 different vendors. Such kinds of firmware spanned various de-

ice categories, such as IP cameras, routers, and switches. We used Binwalk [ 36 ] to decompress

he firmware and extracted 12,699 binaries. This large-scale dataset allowed us to test the scalabil-

ty and applicability of LibAM in real-world situations, further demonstrating its scalability and

racticality. 

By leveraging these four datasets, we were able to rigorously evaluate the accuracy of LibAM

n a variety of environments, ensuring that our model is adaptable and effective in handling real-

orld challenges. The results from this comprehensive evaluation serve as strong evidence for the

uitability of LibAM for deployment in practical TPL detection tasks. 

.2 Compared Methods 

n this evaluation, we introduced the comparison between LibAM and various existing methods,

xamining their strengths and weaknesses in different scenarios. We aimed to provide a compre-

ensive assessment of the accuracy of both constant-based works and function similarity-based

orks, and to demonstrate the effectiveness of LibAM. The comparison methods are further elab-

rated on below: 

LibDX: LibDX [ 23 ] has the advantage of being a simple and fast TPL detection approach. How-

ver, its reliance on constant features, specifically strings, might result in limited detection capa-

ilities when dealing with binaries with few strings. Additionally, this approach may produce false

ositives when the logical blocks in the target binary and TPL are coincidentally similar. 

B2SFinder: B2SFinder [ 21 ] boasts a comprehensive range of constant features, allowing it to

erform a more in-depth analysis when detecting TPL reuse. However, this approach may suffer

rom increased computational complexity and time cost due to the increased number of features it

mploys. Moreover, as a constant-based work, B2SFinder still faces performance degradation from

inary with fewer constant features. 

ISRD Gemini : ISRD [ 22 ] checks if more than half of the functions in the TPL match the functions

n the target binary to determine reuse. However, as ISRD is limited to detecting TPLs in cross-

rchitecture environments and has no open-source version available, we did not perform a direct

omparison between LibAM and ISRD. Instead, we use Gemini [ 30 ] as a baseline with the strategy

f ISRD, which is called ISRD Gem in i . Note that, LibAM focuses on the work after function matching

nd can simply replace Gemini with ISRD to detect anchors in a single environment. 

LibDB: LibDB [ 24 ] adds FCG information to perform simple filtering of function matching re-

ults. It detects if there are more than three matched functions on the FCG to determine reuse.

nlike LibDB, which performs a simple filter on isolated functions, LibAM connects the isolated

unctions into areas to compare the structural similarity of areas and solves the overlapping prob-

em of LibDB with the Anchor Alignment algorithm. 

By comparing LibAM with these existing works, we were able to highlight the advantages and

nique features of our approach. As for ModX [ 28 ], since it is not open source and it focuses on

rogram modularity and reverse program semantic understanding, TPL detection is only one of its

pplication tasks, we did not implement it. Through this evaluation, we demonstrated that LibAM

utperforms other methods in various aspects, such as the ability to detect TPLs across different

nvironments, offering a comprehensive analysis through the Area detection task, and addressing
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Table 2. Accuracy on TPL Detection Task on Dataset_ISRD 

Model LibDX B2SFinder ISRD Gem in i LibDB LibAM 

P 0.920 0.692 0.304 0.534 1.0 

R 0.809 0.644 0.518 0.920 0.993 

F1 0.837 0.664 0.312 0.568 0.996 
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he overlapping issue using the Anchor Alignment algorithm. This comparison demonstrates the

ffectiveness and superiority of LibAM in TPL detection tasks. 

.3 Answer to RQ1: Accuracy of LibAM in Public Real-World Dataset 

n this evaluation, we test the accuracy of LibAM on public real-world Dataset_ISRD. Table 2

eports the accuracy of LibAM in terms of precision, recall, and F1 score compared with other

orks. 

The results showed that LibAM achieved the highest precision and recall, with a precision of

.0 and a recall of 0.993. Compared with other works, LibAM’s precision was 8.0% higher than the

econd-ranking LibDX [ 23 ], and the recall was 7.3% higher than the second-ranking LibDB [ 24 ].

ibAM can accurately identify every reuse in Dataset_ISRD, and only the liblzg code area reused

y lzbench is too small to cause LibAM to miss it. The reuse area detection in Section 4.4 can further

xplain the good results of TPL detection. 

To our surprise, LibDX [ 23 ] achieves the second-highest precision of 0.92 and a high recall of

.809, demonstrating that continuous strings in binaries can provide weak semantic information.

he precision of B2SFinder[ 21 ] that uses more types of constant features is only 0.692 in precision

nd 0.644 in recall. Although B2SFinder uses many types of features rather than just strings, the

se of thresholds for the entire file granularity makes both precision and recall significantly lower

han LibDX. Although LibDX can achieve good scores, it is still significantly lower than LibAM

ue to the harsh conditions for ten continuous strings. For example, LibDX[ 23 ] cannot detect the

zbench reuse from csc , because even if the number of common strings is large, the number of

ontinuous strings is only 2. 

We analyzed the bad cases and find that both constant-based works [ 21 , 23 ] have limitations in

eal-world scenarios for two main reasons. Firstly, some reused binaries have few constant features,

uch as the brotli code reused in lzbench . Additionally, some binaries slightly modify the reused

ode to remove string-print instructions without changing the semantics. As in the case of minizip ,

hich removes the string-print instructions in the BZ2 _ Block S ort function of bzip2 . Consequently,

oth constant-based works fail to detect this reuse relation. To deal with this problem, LibAM uses

unction matching and area matching to detect functions that do not contain or contain few strings.

Both the precision and recall of ISRD Gem in i [ 22 ] are the lowest, which proved that directly using

unction similarity result as the TPL detection result cannot get a satisfactory result. Although

igure 9 demonstrates that Gemini has a high ability to distinguish between pairs of functions

hat are homologous and non-homologous, it is quite difficult to retrieve homologous functions in

arge-scale functions, which is consistent with the results of jTrans [ 37 ]. 

To handle this problem, LibDB [ 24 ] leverages common edges in FCG to filter the function simi-

arity results and get a higher recall. However, LibDB [ 24 ] only uses three common edges to filter

unctions, which is too simple to cause many false positives. Moreover, the overlapping phenom-

non further aggravates the problem. 

On the contrary, based on the function matching results, LibAM expands the comparison granu-

arity to the area on FCG and further detects the similarity of areas using area structural similarity

nd anchor alignment length, so as to obtain good results. 
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Table 3. Accuracy on Area Detection Task on Dataset_ISRD 

Model LibDX B2SFinder ISRD Gem in i LibDB LibAM 

P 0.779 0.519 0.250 0.613 0.985 

R 0.291 0.372 0.573 0.719 0.847 

F1 0.379 0.393 0.311 0.619 0.910 
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.4 Answer to RQ2: Accuracy of Detecting Reuse Areas and the Interpretable Evidence

for TPL Detection 

n this evaluation, we employ Dataset_ISRD to evaluate the exact area detection ability of LibAM.

hree of us manually analyzed the exact reuse areas as ground truth over the course of a week.

ince neither the target binaries nor the TPL binaries in the ISRD dataset have deleted function

ames, we can easily analyze which functions are reused and generate ground truth by function

ames. However, the function names in some reuse areas may be slightly modified and cannot be

irectly compared by string, so we manually filter them one by one to determine the exact reuse

reas. 

As shown in Table 3 , LibAM can accurately detect reuse areas by filtering at the function level,

rea structure level, and area node level of 0.985 in precision and 0.847 in recall. In order to avoid

alse positives, we set the areas with an alignment length of more than 3 to be recognized as reuse

reas, which makes some small areas easy to be missed, thus leading to the fact that recall is not

s high as precision. However, the results show that LibAM is able to detect accurate reuse areas

o support the interpretable TPL detection results. 

The previous works only performed TPL detection without Area detection, so they cannot be

sed directly for area detection, we simply modified existing work to support area detection and

ompare them with LibAM. Specifically, we treat the functions that use the matched constant fea-

ures in LibDX and B2SFinder as reuse areas. For ISRD Gem in i , we just take matched functions as the

euse area. For LibDB, we use the functions that satisfy the three common edges as the reuse area.

LibDX [ 23 ] still has the second-highest precision of 0.779, but its recall is only 0.291. Our analysis

f bad cases shows that a large number of matched strings are not called by functions in LibDX,

hich makes it difficult to determine which piece of code is being reused. 

The same problem occurs in B2SFinder [ 21 ], which uses a wider variety of features and has a

ignificantly higher recall than LibDX, but still only 0.372. This demonstrates that while Constant-

ased works are convenient and effective, it is difficult to identify, which code areas are actually

eused, and these matched features are sometimes difficult to use as interpretable evidence that

PL is actually reused. 

Function similarity-based works have a significantly higher recall due to the comparison of all

unctions. Even ISRD Gem in i , which directly uses the matched functions as the reuse area, has a

ecall of 0.573. After filtering with 3 common edges, LibDB obtains a precision of 0.613 and a recall

f 0.719. However, there is still a big gap between them and LibAM. 
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Table 4. TPL Detection Accuracy of Different Optimization Options in x64-x64 

Model 

O0-default O1-default O2-default O3-default Average 

P R F1 P R F1 P R F1 P R F1 P R F1 

LibDX 0.55 0.44 0.43 0.80 0.61 0.65 0.74 0.61 0.63 0.74 0.61 0.63 0.71 0.56 0.58 

B2SFinder 0.60 0.39 0.45 0.60 0.39 0.45 0.58 0.39 0.45 0.58 0.39 0.45 0.59 0.39 0.45 

I SRD Gem in i 0.13 0.34 0.19 0.31 0.36 0.25 0.33 0.36 0.28 0.22 0.35 0.27 0.25 0.35 0.25 

LibDB 0.38 0.47 0.32 0.44 0.83 0.50 0.47 0.85 0.54 0.45 0.81 0.51 0.44 0.74 0.46 

LibAM −aliдn 0.16 1.0 0.23 0.17 1.0 0.24 0.19 1.0 0.26 0.19 1.0 0.28 0.18 1.0 0.25 

LibAM −дnn 0.47 0.86 0.58 0.52 0.96 0.62 0.54 0.98 0.63 0.58 0.96 0.67 0.53 0.94 0.62 

LibAM 0.90 0.86 0.88 0.94 0.97 0.95 0.94 0.97 0.95 0.93 0.96 0.94 0.93 0.94 0.93 

Table 5. TPL Detection Accuracy of Different Architectures with O2-default Options and M ix 

Model 

x86-x64 x64-x64 arm-x64 Average Mix 

P R F1 P R F1 P R F1 P R F1 P R F1 

LibDX 0.74 0.61 0.63 0.74 0.61 0.63 0.55 0.44 0.44 0.68 0.55 0.57 0.66 0.52 0.53 

B2SFinder 0.60 0.39 0.45 0.58 0.39 0.45 0.60 0.38 0.44 0.59 0.39 0.44 0.60 0.39 0.44 

I SRD Gem in i 0.33 0.36 0.26 0.33 0.36 0.28 0.26 0.33 0.28 0.31 0.35 0.28 0.24 0.34 0.25 

LibDB 0.43 0.78 0.48 0.47 0.85 0.54 0.43 0.63 0.44 0.44 0.76 0.49 0.40 0.64 0.41 

LibAM −aliдn 0.18 1.0 0.26 0.19 1.0 0.26 0.16 0.99 0.23 0.18 1.0 0.25 0.17 1.0 0.24 

LibAM −дnn 0.50 0.98 0.62 0.54 0.98 0.63 0.66 0.94 0.74 0.56 0.97 0.67 0.53 0.91 0.63 

LibAM 0.97 0.97 0.97 0.94 0.97 0.95 0.97 0.93 0.94 0.96 0.96 0.95 0.90 0.88 0.88 
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.5 Answer to RQ3: Accuracy of LibAM in Different Architectures and Optimization 

Options 

n this evaluation, we aimed to assess the robustness of the works under extreme conditions by

everaging Dataset_ExtISRD. We designed a series of experiments to test the accuracy of the works

hen faced with different compilation option combinations and architectural variations. Our goal

as to evaluate the adaptability of the works in handling various real-world scenarios, ensuring

hat they are applicable across a wide range of situations. 

Table 4 presents every compilation option combination for x64-x64, where both target and TPL

inaries are in x64. This setup allows us to evaluate the accuracy of the works when dealing with

inaries compiled using various optimization levels and options. By examining how the works

andle these diverse combinations, we can better understand their ability to cope with complex

nd challenging scenarios. 

In Table 5 , we showcase every architecture combination with O2-default options, where target

inaries are compiled with O2 optimization while TPL binaries are compiled using default options.

his experiment is designed to test the works’ robustness when faced with discrepancies between

arget and TPL binaries in terms of architectures. This is particularly relevant in real-world IoT

rmware. 

The M ix entry in Table 5 represents a combination of all 12 optimization options and archi-

ecture variations. In this experiment, we aimed to evaluate the works’ accuracy under a more

omplex and diverse set of conditions, simulating the challenges they may encounter in real-world

ituations. By testing the works’ adaptability to this wide range of scenarios, we can gain insights

nto their overall robustness and resilience. 
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Table 6. Accuracy on Area Detection Task on Dataset_ExtISRD 

Model LibDX B2SFinder ISRD Gem in i LibDB LibAM 

P 0.478 0.402 0.131 0.396 0.941 

R 0.187 0.262 0.380 0.101 0.462 

F1 0.269 0.317 0.195 0.161 0.620 
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It is important to note that the default compilation option in Dataset_ExtISRD is a mix of O2

nd O3 optimization levels, rather than a single optimization level. This choice reflects the reality

f software development, where binaries are often compiled using a combination of optimization

evels to balance accuracy and code size. This mixed optimization setting further enhances the

omplexity and diversity of the dataset, providing a more challenging testbed for the works under

valuation. 

LibAM achieved a precision of 0.93 and recall of 0.94 on average for different optimization op-

ions. In different architectures, LibAM achieved a precision of 0.96 and recall of 0.96. LibAM main-

ains a high score across architectures. The cross-optimization option has a greater impact on

ibAM, but LibAM still maintains good results even with the O0 option. These results indicate

hat LibAM consistently achieves high accuracy in all environments. 

Due to the natural robustness of constant features under different compilation options, the re-

ults of B2SFinder are very stable. In contrast, the accuracy of LibDX [ 23 ] is significantly degraded

ue to the changes in the order of strings in different environments. The results show that the two

onstant-based works are more stable across optimization options and architectures, but their

cores are not ideal. 

The results of both two function similarity-based works vary unstably from one compilation

nvironment to another. LibDB has a recall rate of up to 0.85, while in the lowest case, it is only

.47. At the limit of O0, ISRD Gem in i only gets a precision of 0.13. This is because the homologous

unctions obtained by compiling in different environments change a lot, resulting in poor func-

ion similarity matching results. This indicates that the stability of TPL detection using isolated

unction matching is poor. In contrast, LibAM greatly reduces the impact of different compilation

nvironments on function matching results by connecting isolated functions to areas and compar-

ng area similarity, thus filtering out many mistakes. 

In Table 6 , although LibAM still achieves high scores for the TPL detection task on datasets with

ross-architecture and optimization options, the results for area detection drop significantly. Due to

trict conditional filtering, LibAM still achieves a precision of 0.941 on the area detection task, but

he recall is only 0.462. Nevertheless, LibAM still outperforms all other methods, which have un-

atisfactory results on this challenging task. The reason for the significant decrease in recall is that

he FCG changes across optimization options and architectures, and the Area Detection task is very

emanding, so LibAM ensures high precision through strict filtering, but at the cost of some recall.

In fact, detecting reused areas across optimization options and architectures is a serious chal-

enge, and this is the first evaluation work. Therefore, the precision and recall of existing methods

re less than satisfactory. Despite this challenging task, LibAM still clearly outperforms other ex-

sting methods, and the high precision rate increases the usability of LibAM. Future proposals of

etter function similarity matching tools may further improve the precision. Besides, new area

atching methods are expected to be further proposed in the future to improve the low recall

eficiency. 

Figure 10 presents violin plots illustrating the distribution of precision, recall, and F1 value

cross various architectures and optimization options. Notably, the results of LibAM are pre-

ominantly clustered around 1.0, demonstrating a significantly superior and more concentrated
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Fig. 10. Violin plots for each approach in Dataset_ExtISRD. We have shown the distribution of Precision, 

Recall, and F1 value under different architectures and optimizations, respectively. 

a  

1  

f  

n  

p  

t  

a  

d

ccuracy compared to other methods. The results of LibDB [ 24 ] are mainly concentrated around

.0 and 0.2, attributable to its high recognition accuracy for a limited number of samples that have

ewer reuse relationships, while the accuracy for other samples is generally low. A substantial

umber of samples in ISRD Gem in i [ 22 ] close proximity to 0, as relationships with a reuse pro-

ortion less than half are frequently undetected by ISRD Gem in i [ 22 ]. The distribution patterns of

he two Constant-based works [ 21 , 23 ] are similar, exhibiting a polarized distribution between 1.0

nd 0. This is because they have good detection accuracy for samples with rich strings, but poor

etection ability for samples with fewer strings. 
ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023. 



52:24 S. Li et al. 

4

I  

g  

e  

A  

o  

l  

f  

t  

t

 

r  

d  

W  

r  

a  

r  

p

 

a  

h  

d  

e  

c  

t  

s  

t  

e

 

t  

L  

i  

i  

a

 

m  

D

 

i  

e  

c  

d  

i  

D

 

p  

g  

A

.6 Answer to RQ4: Impact of Each Part in LibAM 

n order to evaluate the impact of the Anchor Alignment algorithm and the Embedded-GNN al-

orithm on the accuracy of our proposed LibAM framework, we conducted two separate ablation

xperiments, as in Tables 4 and 5 . The first variant, LibAM −aliдn , is a version of LibAM without the

nchor Alignment algorithm, while the second variant, LibAM −дnn , is a version of LibAM with-

ut the Embedded-GNN algorithm. By analyzing the results of these experiments, we aim to shed

ight on the individual contributions of these two algorithms to the overall accuracy of the LibAM

ramework. In addition, we conducted sensitivity experiments on the selection of threshold n for

he Anchor Alignment algorithm and tested the trend of precision and recall with changes in the

hreshold. 

In the case of LibAM −aliдn , after obtaining anchors via function matching, the framework solely

elies on the GNN algorithm to compare the structural similarity of the areas in question. An area is

eemed as a reused area if its structural similarity score surpasses a predetermined threshold value.

hile this approach attains a perfect recall score of 1.0 across all tested scenarios, the precision

emains consistently below 0.2. This is primarily due to the presence of numerous similar CFGs

nd FCGs within non-homologous functions, which leads to a high rate of false positives. These

esults emphasize the vital role of the Anchor Alignment algorithm in further filtering out false

ositives and improving the precision of the LibAM framework. 

On the other hand, LibAM −дnn disregards the structural similarity of areas altogether. Instead,

fter obtaining anchors, it uses only the anchor alignment length to determine whether an area

as been reused. This approach bears a resemblance to the LibDB framework but with a few key

ifferences. Specifically, LibAM −дnn addresses the overlapping phenomenon present in LibDB by

mploying the Anchor Alignment algorithm. This results in a significant improvement in both pre-

ision and recall rates, owing to the strict one-to-one alignment relationship between anchors and

he absence of proportional limitation used in LibDB. However, despite these improvements, a sub-

tantial accuracy gap remains between LibAM −дnn and the full LibAM framework. This indicates

hat considering the structural similarity of areas is instrumental in filtering out false positives and

nhancing the overall accuracy of the LibAM framework. 

In conclusion, our ablation experiments demonstrate the considerable contributions of both

he Anchor Alignment algorithm and the Embedded-GNN algorithm to the effectiveness of the

ibAM framework. The Anchor Alignment algorithm is crucial for filtering out false positives and

mproving precision, while the Embedded-GNN algorithm plays a significant role in further refin-

ng the identification of reuse areas. By incorporating these two algorithms, the LibAM framework

chieves more robust and accurate in detecting TPLs and identifying exact reuse areas. 

We further investigated the impact of varying threshold values n within the Anchor Align-

ent algorithms on LibAM’s accuracy in TPL detection tasks, utilizing both Dataset_ISRD and

ataset_ExtISRD. For this experiment, in Table 7 , n values ranged from 1 to 5. 

For Dataset_ISRD, the results demonstrate that precision increases progressively with the rise

n n, attaining its maximum at n = 3. This improvement can be attributed to the algorithm’s

nhanced ability to differentiate between true and false reuse relationships as the threshold be-

omes more stringent. Conversely, recall diminishes gradually as n increases, with a substantial

ecline observed at n = 4. This decline is likely due to the higher threshold inadvertently exclud-

ng some relevant reuse relationships. Nevertheless, LibAM demonstrates satisfactory accuracy on

ataset_ISRD for both n = 3 and n = 4, achieving a balance between precision and recall. 

In the case of Dataset_ExtISRD, which comprises samples with more intricate reuse patterns,

recision consistently increases with the growth of n for values less than 4. However, when n is

reater than or equal to 4, the average precision begins to decline, because some samples remain
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Table 7. The Impact of Threshold n Selection on TPL Detection Results in 

Anchor Alignment Algorithm 

Dataset Metrics n = 1 n = 2 n = 3 n = 4 n = 5 

P 0.604 0.794 1.0 1.0 1.0 

Dataset_ISRD R 0.993 0.993 0.993 0.947 0.804

F1 0.708 0.856 0.996 0.971 0.883

P 623 0.671 0.863 0.811 0.599

Dataset_ExtISRD R 0.905 0.896 0.848 0.452 0.253

F1 0.704 0.734 0.842 0.533 0.322

Table 8. Efficiency Evaluation 

Model Feature extraction Embedding TPL detection Area detection All T P L All ar ea 

LibDX 7.5s – 7.5s – 15.1s 15.1s 

B2SFinder 7.5s – 70.4s – 77.9s 77.9s 

ISRD Gem in i 38.8s 1.8s 1.1s – 41.8s 41.8s 

LibDB 42.5s 1.8s 28.6s – 72.8s 72.8s 

LibAM 42.5s 3.4s 8.3s 109.9s 52.7s 162.6s 
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ndetected, which causes a precision of 0. This phenomenon suggests that a higher threshold

ight impede the algorithm’s sensitivity to subtle reuse patterns. On the other hand, the recall

till significantly decreases with the increase of n, indicating that larger thresholds are more likely

o miss out on smaller reuse areas. This evaluation indicates the algorithm’s capacity to accurately

iscern genuine reuse relationships even in more complex scenarios. 

In summary, our experiments reveal that for both datasets, the optimal results are achieved

hen n is set to 3. This value represents a balance between precision and recall, allowing LibAM

o effectively identify true reuse relationships while minimizing false positives and false negatives.

hese findings have implications for the tuning of the Anchor Alignment algorithm in TPL detec-

ion tasks, shedding light on the importance of selecting appropriate threshold values to optimize

ccuracy. 

.7 Answer to RQ5: Efficient of LibAM 

n this evaluation, we assessed the time cost for detecting Dataset_ISRD and Dataset_ExtISRD as

resented in Table 8 . We conducted a comparative analysis of each step in the approaches and

alculated the time required for the TPL detection task and the Area detection task separately to

nalyze the efficiency of LibAM in relation to existing works. Feature extraction represents the

eature Extraction phase, while Embedding represents the function or area embedding phase. TPL

etection refers to the time cost from the completion of the Embedding phase until the TPL de-

ection task is finished, and Area detection refers to the time cost for the Area detection task. The

ull-time costs for the TPL detection task and the Area detection task are denoted as All T P L and

ll ar ea , respectively. 
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Table 9. Large-Scale IoT Firmware Evaluation 

Brand Firmware TPL Average TPL Vul Average vul 

Xiaomi 24 1226 51 1950 81 

Huawei 14 458 33 1893 135 

ASUS 25 808 32 2099 84 

Dell 25 192 7 1572 63 

Linksys 12 141 12 1433 119 

Dahua 19 210 11 1440 76 

xiongmai 8 104 13 1268 159 

Hikvision 23 128 6 1485 65 

D-Link 9 53 6 1462 162 

Tplink 5 33 7 261 52 
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For constant-based works, the most significant time-consuming aspect is the constant

omparison phase. The feature extraction phase in constant-based works, which focuses on

xtracting string or other constant features, is much faster than in function similarity-based works.

ibDX [ 23 ], which employs only string features accelerated by a backward indexing algorithm, is

he fastest of all methods. On average, LibDX takes only 15.1 seconds to complete the detection

f the target binary. B2SFinder [ 21 ], on the other hand, takes a longer time to match features due

o the inability to accelerate the comparison of if/switch features using inverted indexes or prefix

rees like strings or arrays. B2SFinder takes 77.9 seconds to detect a target binary, making it the

ost time-consuming of all TPL detection methods. 

For function similarity-based works, the most time-consuming process is feature extraction via

DA Pro. In ISRD Gem in i , mor e than 90% of the time is spent on extracting function featur es. In

ibDB, the TPL detection phase is also time-consuming. However, due to the acceleration strategy

etailed in Section 3 , LibAM is faster than both LibDB and B2SFinder in the TPL detection task,

ith 80% of the time allocated to feature extraction. While LibAM is more time-consuming in the

rea detection task, it is the only method capable of accurately identifying reuse areas. 

Furthermore, since only the detected reused relations, rather than all TPLs, are needed to further

dentify the reuse areas, the time consumption of the area detection phase is manageable. More-

ver, as LibAM uses the top 200 TPLs and top 100 function limits, which are the same as LibDB,

he detection time cost does not increase with the size of the TPL database. This aspect contributes

o the overall efficiency of the LibAM framework when compared to existing works. 

.8 Answer to RQ6: Accuracy of Detecting Large-Scale Reuse Relation 

n this evaluation, we evaluated the ability of LibAM to detect large-scale real-world reuse relations

nd validated the possibilities of reuse area detection in associating vulnerabilities. Furthermore,

e analyzed the detection results and made several interesting findings. 

For target binaries, we selected 10 vendors and collected 30 firmware for each vendor. Then,

e use Binwalk [ 36 ] to extract the file system and binaries in firmware. There are 164 firmware

xtracted successfully, from which we extracted 12,699 binaries, as in Table 9 . 
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Fig. 11. The result of IoT firmware analyzed by LibAM. 11(a) is the number of firmware by the Top 10 TPLs, 

11(b) is the number of vendors by the Top 10 TPLs, 11(c) is the number of binaries by the Top 10 TPLs, and 

11(d) is the number of CVEs by the Top 10 CWEs. 
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For TPL binaries, we first collect the widely used TPLs from Conan [ 1 ] and Vcpkg [ 2 ]. Then, we

ompile some well-known projects from Github [ 3 ] and SourceForge [ 4 ] by ourselves. Besides, we

lso extract known TPLs in some Linux-based operating systems. Finally, we selected those with

ublic vulnerability information and obtained 216 TPL binaries from these candidate TPLs. 

LibAM detected ,3353 TPLs, as shown in Table 9 . This entire process was completed in 30 hours.

e counted the TPLs with the widest impact range, as shown in Figure 11 . Figure 11 (a) shows the

op 10 TPLs that are reused in the highest number of firmware and busybox is the most reused

PL. 11 (b) and 11 (c) demonstrate the top 10 TPLs with the most influential vendors and binaries

nd they are slightly different from the TPLs in Figure 11 (a). 

In addition to detecting TPLs, we want to further associate vulnerabilities that may be intro-

uced by TPL reuse, which is one of the downstream tasks. Firstly, we conducted a web crawler

o collect the public vulnerability data of detected TPLs from CVE [ 11 ] and NVD [ 12 ] cites. Then,

e utilized an existing technique [ 9 ] to extract all strings from the TPLs of vulnerability-related

ersions, enabling us to identify the specific version of the detected TPLs through string match-

ng. After that, we associated 2519 CVEs and generated 14,863 potential vulnerabilities for 167

rmware. In Figure 11 (c), we listed the top 10 vulnerability types (CWE) that have the highest

umber of CVEs. 

Note that many software vulnerabilities affect only partial versions, and we filter non-vulnerable

ersions by combining existing version identification works [ 9 ]. In addition, lots of TPLs are par-

ially reused, which causes vulnerable functions may not be in the target software [ 9 ]. As a result,

xisting methods tend to produce numerous false positives when their detected TPLs are directly

ssociated with a vulnerability. LibAM is expected to solve this problem by reuse area detection

echniques. We can extract the vulnerable function names from patches and match them with the
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Fig. 12. CDF plots of the two findings. 12(a) indicates for each TPL, the proportion of target binaries reuse 

the same area of it. 12(b) indicates that for each target binary, the number of TPLs detected in the same area. 
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eused function names in TPLs detected by the area matching framework. Out of the 2,519 CVEs

hat we associated, 1,240 had patches available. This enabled us to further filter the false posi-

ives. After the filtering process, we were able to reduce the number of vulnerabilities associated

ith TPL from 36,135 down to 14,863. To explain how LibAM filters incorrect vulnerabilities, we’re

resenting two examples. In the case of CVE-2014-9485, there’s a vulnerability related to Path Tra-

ersal in the do _ ext ract _ cur r e nt f ile function within the minizip library. While both precomp and

zbench use parts of minizip ’s code, they do not use the specific do _ ext ract _ cur r e nt f ile function.

s a result, there will be two false positive vulnerabilities without area detection. LibAM handles

his by identifying these reused areas and removing the false positives. Additionally, for CVE-2019-

2900, there’s a vulnerability involving an out-of-bounds write operation in the BZ2 _ dec omp ress
unction in version 1.0.6 of the bzip2 library. Versions of minizip from 2.0.0 to 2.7.5 use this vul-

erable version of bzip2 , making them vulnerable to this particular issue. However, lzbench is not

ffected because it uses versions of bzip2 released after 1.8. Therefore, identifying the specific li-

rary versions also helps to eliminate incorrect vulnerability warnings. 

Furthermore, by analyzing the results, we have the following findings, which demonstrate the

enefits of area detection for discovering complex reuse relationships. 

Different target binaries always tend to reuse the same area of TPL. In the detection re-

ults of Dataset_FW, different areas of TPLs have different tendencies to be reused. In Figure 12 (a),

ore than 85.8% of TPLs meet the requirement of having the area reused by more than 50% of the

etected target binaries. Besides, 43.5% of TPLs have more than 90% of target binaries reusing the

ame area of it. This finding aligns with the ground truth from the public Dataset_ISRD. For exam-

le, all four target binaries that reuse the Bzip2 share the same BZ2_bzBufferToBuffCompress and

Z2_bzBufferToBuffDecompress functions, as well as their respective subfunctions. This suggests

hat some areas of code in TPLs are more likely to be reused than others and that vulnerabilities

n these code areas are more widespread in their impact. Consequently, when a code area from a

PL is identified as being reused, it is more probable that this area will also be reused by other

oftware. Based on this finding, researchers can allocate additional manual analysis resources to

crutinize code areas that exhibit a higher likelihood of reuse, thus enhancing the effectiveness of

ulnerability detection and mitigation efforts. 

There are numerous identical reuse areas in different TPLs. In Figure 12 (b), more than

7.5% of target binaries meet the requirement that the same area is detected to have reuse rela-

ionships with more than two TPLs. Moreover, The same area can be detected in up to 15 different

PLs. This is also reflected in the ground truth of Dataset_ISRD. For instance, lzbench reuses a

arge number of functions from precomp , many of which are actually from Brotli . Dataset_ISRD
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nly analyzes that lzbench reuses precomp and Brotli , but after area detection, we find that these two

euses are actually the same area of code. This shows that area detection is able to detect complex

euse relationships. In addition, different areas of the TPLs may represent different functionalities.

istinguishing between areas that are reused by more TPLs and more specific areas belonging to

nly one TPL facilitates further manual analysis, e.g., analysis of areas that are reused more often

ill lead to more valuable results. 

 DISCUSSION 

ibAM achieved high scores on both TPL detection tasks and Reuse area detection tasks. Although

he accuracy of the reuse area detection task was not as high as that of the TPL detection task, we

ave proved that the Area Matching framework is feasible, and further research into a better Area

atching framework is worth pursuing. Moreover, we believe that Area Matching framework at

he FCG level has research prospects for other applications of binary similarity calculation such

s malware detection, software infringement, and patch analysis. 

Software reuse relationships are often complicated. We have addressed the issue of partial reuse

hrough Area Matching framework. The detection at the area level makes the detection granularity

onsistent with the reuse granularity, greatly reducing the mistakes caused by existing approaches

hat set thresholds for file-level TPLs. 

The existing works [ 22 , 24 , 28 ], including LibAM, are based on the results of function similarity

alculation methods. However, even the SOTA function similarity calculation methods may yield

any false positives and false negatives in different optimization options and architectures [ 37 ].

lthough LibAM has significantly reduced this impact through Area Matching framework, the im-

act still exists. A better function similarity calculation method can further improve the accuracy

f TPL detection. 

LibAM focuses on the improvement of TPL detection at the area level compared to existing

ethods, leaving the improvement of the function similarity calculation work itself to help TPL

etection for future research. We performed TPL detection for target binaries with different op-

imization options and architectures to demonstrate the stability of LibAM. We did not do other

imilar experiments across compilers, as in IoT firmware, we found that the main impact comes

rom the different compilation options, and the compilers tend to be only gcc , with operating sys-

em mostly based on Linux. We leave the more diverse scenarios for future research. 

Some callee functions may be called externally, such as using dynamic links. This can lead to

ifferences in the target FCG and TPL FCG. However, by using the external dynamic link library

s the target binary for LibAM, we can detect the missed TPLs caused by the FCG difference. In

act, in Dataset_ISRD, all callee functions are within the binary. The only observed external call

s the use of an additional springboard function for calls to the C standard library function in the

64 architecture, which resulted in a minor difference from other architectures. Nevertheless, this

ifference did not have a significant impact on the detection process. 

Some TPL detection works treat different versions of TPL as different libraries [ 20 , 21 , 28 ], and

ther TPL detection works also do simple version identification by using the TPL detection tech-

ology [ 9 , 24 ]. We believe that version identification using coarse-grained features at the library

evel is inaccurate because TPL detection aims to detect roughly similar code in a large amount of

ifferent code, while version identification aims to detect fine-grained differences in a large amount
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f the same code. We consider the TPL detection work as orthogonal to the version identification

ork. It is worth noting that LibAM can be directly combined with existing version identification

ork, as in Section 4.8 , where we use the version identification method in OSSPolice [ 9 ]. 

There is a bias between the list of potential vulnerabilities generated in Section 4.7 and the real

ulnerabilities. Even though we have filtered out many false positives through version and reuse

rea location information, the target binary may patch known vulnerabilities or the target binary

ulnerabilities cannot be triggered, which is a common problem faced by all TPL detection works.

ulnerabilities verifying work [ 38 , 39 , 40 , 41 , 42 , 43 , 44 ] need to be done to further verify the quality

f potential vulnerabilities. However, this article has demonstrated the accuracy of TPL detection

nd reuse area detection compared with the existing methods, and vulnerability association is

nly one application of LibAM. We regard vulnerabilities verifying as orthogonal work for future

esearch. 

 RELATED WORK 

.1 Binary Function Similarity Calculation 

inary similarity calculation can be applied to various applications, such as reuse detection [ 22 ,

4 ], malware identification [ 45 ], vulnerability search [ 40 , 41 ], patches detection [ 38 , 39 , 46 ], and

o on. Recently, many researchers have focused on binary similarity calculation work. 

During the compilation of C/C++ code, many changes occur, and important information is

ost, such as function names, variable names, source comments, data structure definitions, and

o on [ 27 ]. Furthermore, the same source code can produce vastly different binaries when com-

iled with different options and architectures, making binary similarity calculation more difficult.

 large number of works have been proposed for binary function similarity calculation. 

When discussing text hashing-based approaches like Gitz [ 47 ] and VIVA [ 48 ], it is important to

onsider the inherent limitations of such techniques. While they offer simplicity and efficiency, text

ashing methods can be sensitive to even minor changes in the binary code, potentially leading to

alse negatives in similarity detection. Furthermore, these methods may not be as effective when

onfronted with obfuscated code or code that has undergone significant transformations during

ompilation. 

Symbolic execution-based techniques, such as BinSim [ 45 ] and Bingo [ 49 ], offer a more robust

pproach to function similarity detection. By analyzing the possible execution paths and states of

 binary function, these methods can provide a more comprehensive understanding of the under-

ying code. However, symbolic execution can be computationally expensive, particularly for large

r complex codebases, and may be prone to path explosion and state space explosion issues. 

Deep learning-based approaches [ 50 –52 ] have gained traction in recent years due to their abil-

ty to automatically learn feature representations from raw data. These methods can effectively

apture complex patterns and relationships in the binary code, potentially leading to more accu-

ate similarity detection. Nevertheless, deep learning models can be resource-intensive, requiring

ignificant computational power and training data to achieve optimal accuracy. 

The use of NLP techniques, such as JTrans [ 37 ], in binary function similarity calculation rep-

esents an innovative approach that leverages the advancements made in natural language pro-

essing. By treating binary code as a form of language, these methods can apply well-established

LP techniques to analyze and compare binary functions. However, such approaches may still face

hallenges when dealing with the diverse nature of binary code, which can differ significantly from

atural language in terms of structure and semantics. 

Incorporating multidimensional features, as suggested by recent research [ 53 , 54 ], is an essential

tep toward improving function similarity matching. By considering features like strings, control
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ow graphs, and data flow information, these methods can provide a more holistic view of the

inary code, leading to more accurate and reliable similarity detection. Future research could ex-

lore the integration of various features and their respective weights, enabling more fine-tuned

nd adaptable similarity calculation models. 

However, with the increase of candidate functions and the emergence of complicated prob-

ems such as function inlining, the accuracy of existing function similarity matching methods is

eriously degraded, and new methods need to be proposed to address this problem. The purpose

f this article is to use the results of the function similarity computation as anchors to evaluate the

mprovement brought by the area-level similarity computation for the TPL detection task, without

ocusing on the improvement of the function similarity computation task itself. 

.2 Vulnerability Detection 

ulnerability detection has long been a popular and significant field in computer science and cy-

ersecurity. Researchers aim at detecting vulnerabilities in newly developed code by extracting

eatures from vulnerable functions and determining if these vulnerable functions exist within the

arget code. This process typically involves calculating the similarity between functions, which

orms the basis for most vulnerability detection methodologies. 

Early works in this field, such as Bingo [ 49 ] and SAFE [ 55 ], calculated function similarity by

irectly comparing the vulnerable function with all functions present in the target code. The re-

ulting function similarity score was then utilized as the vulnerability detection result. However,

hese pure function similarity calculations were unable to capture fine-grained features of vul-

erabilities, such as whether the vulnerabilities were patched or not. Consequently, later research

egan to incorporate patch code information to enhance vulnerability detection. 

More recent approaches, including MVP [ 44 ] and VIVA [ 48 ], detect vulnerabilities by employing

ata stream slicing techniques to identify the presence of vulnerability code and the absence of

atch code. Additionally, Fiber [ 38 ] and PDiff [ 39 ] attempt to extract deep patch code semantics by

tilizing symbolic execution to ascertain whether the target vulnerable function has been patched

r not. 

Both TPL detection and vulnerability detection work can detect vulnerabilities due to code reuse

r similarity. Their differences lie in the following aspects: Vulnerability detection methodologies

re typically designed to identify vulnerabilities on a small, fine-grained scale, often incorporating

atch information to enhance detection results. In contrast, TPL detection approaches aim to detect

ode reuse on a larger scale and can improve detection results of individual vulnerable functions

hrough global reuse information. 

Moreover, TPL detection is not limited to correlating one-day vulnerabilities but can also ana-

yze software components, detect software plagiarism, correlate malware, and more. Combining

atch information from vulnerability detection methodologies with the global information from

PL detection approaches may contribute to a more comprehensive and effective vulnerability

etection framework. 

By integrating the strengths of both vulnerability detection and TPL detection techniques, re-

earchers can create more robust and accurate systems for identifying and addressing potential

ecurity risks in software development. This holistic approach will ultimately contribute to en-

ancing overall cybersecurity and ensuring the reliability of software systems in various domains.

.3 Third-Party Libraries Detection 

PLs are essential components of modern software development, as they provide ready-made func-

ionality and enable developers to focus on the core aspects of their applications. However, the
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ntroduction of insecure TPLs can bring new threats to software, making the effective detection of

eused TPLs in target software a hot research topic. 

Previous works [ 13 –17 , 19 , 56 ] have focused on TPL detection tasks in Java, as the Java package

llows for the easy extraction of pseudocode. Consequently, these works on Java code reuse have

roven to be effective. However, C/C++ binaries face more significant challenges in TPL detection,

s much information is stripped and code changes greatly depending on the optimization options

nd architectures used. 

Recently, several works [ 9 , 22 –24 ] have been proposed to address TPL detection in C/C++ bina-

ies. Some of these works, such as BAT [ 20 ], OSSPolice [ 9 ], and B2SFinder [ 21 ], leverage constant

eatures as fingerprints to detect TPL. However, they exhibit poor recall in binaries that lack suffi-

ient constant features. Other works, including ISRD [ 22 ] and LibDB [ 24 ], attempt to use function

imilarity calculation technology to detect TPL reuse. CENTRIS [ 25 ], for example, employs the

rending Local Sensitive Hash Algorithm ( TLSH ) for function similarity calculation to de-

ect TPL reuse. However, due to the impact of different compilation environments, the results of

irectly applying function similarity calculation to TPL detection are unsatisfactory [ 37 ]. 

Existing methods often attempt to reduce false positives and false negatives through further

ltering. For instance, ISRD [ 22 ] considers reuse by identifying more than half of the function

imilarity, while LibDB [ 24 ] relies on more than three connected functions on FCGs to judge reuse.

evertheless, these filtering methods are based on isolation function matching, and the final results

till contain numerous false negatives and false positives. Furthermore, these methods demonstrate

oor accuracy under different optimization options and architectures. 

However, these filtering methods are simple and the final results are still many false negatives

nd false positives. They all compare isolated function similarities and filter them with some rules

hat lead to poor accuracy under different optimization options and architectures. We try to explore

euse areas on FCG and conduct area matching rather than isolation function matching to obtain

oth high precision and recall. 

 CONCLUSION 

n this article, we proposed LibAM, a novel Area Matching framework to transform the TPL detec-

ion task into the TPL reuse area matching task, so as to obtain both high accuracy and robustness.

eanwhile, we detect specific reuse areas, thus providing interpretable evidence for TPL detection

esults and helping to detect complex reuse relationships and downstream tasks. 

LibAM stands out from previous methods by overcoming the challenges of exactly detecting

PLs and identifying exact reuse areas efficiently. Our method demonstrates a marked improve-

ent over SOTA techniques by detecting exact TPLs and achieving ideal results in identifying

euse areas. To validate the effectiveness and efficiency of LibAM, we conducted extensive ex-

eriments across various optimization options and architectural frameworks. The results consis-

ently showed that LibAM outperforms existing SOTA work in TPL detection tasks, making it a

ighly desirable solution for a wide range of applications. Furthermore, we evaluated the accu-

acy of LibAM in large-scale and real-world binaries extracted from Internet of Things ( IoT )

rmware to investigate its practical applicability. By doing so, we were able to generate a poten-

ial vulnerability list, which can prove invaluable for researchers and practitioners working on IoT

ecurity. 

In conclusion, LibAM represents a significant advancement in the field of TPL detection, offering

 comprehensive and efficient solution for detecting exact areas and identifying reuse areas. In

uture work, we plan to extend LibAM to overcome other security challenges in the software and

ardware domain, further exploring its wide-ranging applicability and impact. 
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