L))

Check for
updates

LibAM: An Area Matching Framework for Detecting
Third-Party Libraries in Binaries

SIYUAN LI, YONGPAN WANG, CHAOPENG DONG, SHOUGUO YANG, HONG LI,
HAO SUN, ZHE LANG, ZUXIN CHEN, WEIJIE WANG, HONGSONG ZHU, and LIMIN
SUN, Institute of Information Engineering, Chinese Academy of Sciences and School of Cyber Security,

University of Chinese Academy of Sciences, China

Third-party libraries (TPLs) are extensively utilized by developers to expedite the software development pro-
cess and incorporate external functionalities. Nevertheless, insecure TPL reuse can lead to significant security
risks. Existing methods, which involve extracting strings or conducting function matching, are employed to
determine the presence of TPL code in the target binary. However, these methods often yield unsatisfactory
results due to the recurrence of strings and the presence of numerous similar non-homologous functions.
Furthermore, the variation in C/C++ binaries across different optimization options and architectures exac-
erbates the problem. Additionally, existing approaches struggle to identify specific pieces of reused code in
the target binary, complicating the detection of complex reuse relationships and impeding downstream tasks.
And, we call this issue the poor interpretability of TPL detection results.

In this article, we observe that TPL reuse typically involves not just isolated functions but also areas en-
compassing several adjacent functions on the Function Call Graph (FCG). We introduce LibAM, a novel Area
Matching framework that connects isolated functions into function areas on FCG and detects TPLs by com-
paring the similarity of these function areas, significantly mitigating the impact of different optimization
options and architectures. Furthermore, LibAM is the first approach capable of detecting the exact reuse ar-
eas on FCG and offering substantial benefits for downstream tasks. To validate our approach, we compile
the first TPL detection dataset for C/C++ binaries across various optimization options and architectures. Ex-
perimental results demonstrate that LibAM outperforms all existing TPL detection methods and provides
interpretable evidence for TPL detection results by identifying exact reuse areas. We also evaluate LibAM’s
scalability on large-scale, real-world binaries in IoT firmware and generate a list of potential vulnerabilities
for these devices. Our experiments indicate that the Area Matching framework performs exceptionally well
in the TPL detection task and holds promise for other binary similarity analysis tasks. Last but not least, by
analyzing the detection results of IoT firmware, we make several interesting findings, for instance, different
target binaries always tend to reuse the same code area of TPL. The datasets and source code used in this
article are available at https://github.com/Siyuan-Li201/LibAM.

S. Li and Y. Wang contributed equally to this research.

This work was partially supported by the National Key Research and Development Program of China (2022YFB3103904), the
National Natural Science Youth Foundation (62002342), and the National Natural Science Foundation of China (61931019).
Authors’ address: S. Li, Y. Wang, C. Dong, S. Yang, H. Li (Corresponding author), H. Sun, Z. Lang, Z. Chen, W. Wang,
H. Zhu, and L. Sun, Institute of Information Engineering, Chinese Academy of Sciences and School of Cyber Security,
University of Chinese Academy of Sciences, 19 Shucun Road, Shangdi Street, Haidian District, Beijing, China; e-mails:
{lisiyuan, wangyongpan, dongchaopeng, yangshouguo, lihong, sunhao, langzhe, chenzuxin, wangweijie, zhuhongsong,
sunlimin}@iie.ac.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1049-331X/2023/12-ART52 $15.00

https://doi.org/10.1145/3625294

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

https://orcid.org/0009-0004-4096-1209
https://orcid.org/0009-0003-7909-2576
https://orcid.org/0009-0000-4729-7778
https://orcid.org/0000-0003-4385-8261
https://orcid.org/0000-0003-1353-7838
https://orcid.org/0000-0001-6900-0672
https://orcid.org/0000-0002-9915-8312
https://orcid.org/0009-0008-8051-9705
https://orcid.org/0000-0002-6445-1746
https://orcid.org/0000-0003-3720-7403
https://orcid.org/0000-0003-2745-7521
https://orcid.org/0000-0003-2745-7521
https://github.com/Siyuan-Li201/LibAM
mailto:permissions@acm.org
https://doi.org/10.1145/3625294
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3625294&domain=pdf&date_stamp=2023-12-23

52:2 S. Liet al.

CCS Concepts: « Security and privacy — Software reverse engineering - Computing methodologies
— Machine learning;

Additional Key Words and Phrases: Static binary analysis, third-party library detection, software component
analysis

ACM Reference Format:

Siyuan Li, Yongpan Wang, Chaopeng Dong, Shouguo Yang, Hong Li, Hao Sun, Zhe Lang, Zuxin Chen, Weijie
Wang, Hongsong Zhu, and Limin Sun. 2023. LibAM: An Area Matching Framework for Detecting Third-Party
Libraries in Binaries. ACM Trans. Softw. Eng. Methodol. 33, 2, Article 52 (December 2023), 35 pages
https://doi.org/10.1145/3625294

1 INTRODUCTION

In order to accelerate the software development process and integrate external functionalities,
developers frequently rely on existing code from open-source code repositories and package man-
agement platforms such as Conan [1], Vepkg [2], GitHub [3], and SourceForge [4]. These resources
are referred to as third-party libraries (TPLs) [5]. As the open-source software (OSS) ecosys-
tem continues to expand, an ever-increasing number of software projects are being constructed
utilizing TPLs as their foundation. A recent report from Synopsys [6] indicates that a staggering
97% of audited software incorporates at least one TPL.

However, the reliability of a large number of TPLs is difficult to guarantee, and security vul-
nerabilities in one software project can easily propagate throughout the software supply chain,
thereby impacting other software projects. Among the audited software in Synopsys report [6],
81% contain at least one known security vulnerability. Moreover, developers who unintentionally
introduce improper TPLs may also violate open-source licensing regulations, resulting in legal
complications. For instance, both Cisco and VMware have encountered significant legal issues due
to non-compliance with the stipulations set forth in the Linux license [7, 8]. This underlines the
importance of being vigilant when incorporating TPLs into software projects, in order to maintain
both the security and legal integrity of the resulting applications.

Generally speaking, TPL detection is a generic technology that detects code reuse relationships
between software and can be applied to a large number of downstream tasks. On the one hand, both
developers and users are keen to identify and manage TPLs in their software to mitigate security
risks associated with TPL reuse [5]. Moreover, the detection of software plagiarism and open-
source code infringement has gained significant attention from researchers in recent years [9].
On the other hand, TPL detection results can be utilized for 1-day vulnerability detection and
malware identification. For instance, Firmsec [10] employed TPL detection technology to uncover
numerous 1-day vulnerabilities in IoT firmware, demonstrating that the actual impact scope of
known vulnerabilities detected via TPL detection technology often extends far beyond what is
reported in the CVE [11] or NVD [12] databases. This article focuses on the study of the generic
TPL detection technique and evaluates the application of the vulnerability association task.

In an effort to counteract the potential risks posed by unreliable TPLs, numerous researchers
have focused on the development of effective TPL detection approaches for software applications.
Originally, the majority of research efforts concentrated on TPL detection in Java [13-19]. Re-
cently, there has been a growing interest in TPL detection within C/C++ binaries [9, 20-25]. TPL
detection in C/C++ binaries presents even greater challenges, as binaries compiled using diverse
optimization options and architectures exhibit significant differences [26, 27]. In detail, Current
approaches for TPL detection in C/C++ binaries typically involve gathering an extensive data-
base of candidate TPLs and subsequently determining, which of these have been reused in the

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

https://doi.org/10.1145/3625294

LibAM: An Area Matching Framework for Detecting Third-party Libraries in Binaries 52:3

target binary. These approaches can be broadly classified into two main categories: constant-based
works [9, 20-23] and function similarity-based works [22, 24, 28]. Constant-based works identify
TPL reuse within the target binary by extracting identical constant features, such as strings [20,
23], function names [9], and jump tables [21], from both the target binary and the candidate TPLs.
In contrast, function similarity-based works involve comparing all the functions of the target bi-
nary with those of the candidate TPLs. Subsequently, a predetermined threshold is set to establish
whether reuse has occurred. ISRD [22] addresses reuse detection by identifying more than half
of the similar functions in TPL, while LibDB [24] depends on over three connected functions on
FCG to ascertain reuse. ModX [28] divides functions with the same functionality into a group by
clustering and sets a threshold for every group.

However, it is essential to note that existing TPL detection technologies for C/C++ binary exhibit
certain limitations. These limitations may hinder their performance and scalability in addressing
the various downstream tasks for which they are intended. We summarize the limitations of the
existing works in the following three points:

Firstly, existing TPL detection approaches are difficult to achieve both high accuracy and high
robustness across different optimization options and architectures. On the one hand, The features
selected by existing methods are not always working. Although constant-based approaches, which
rely on strings [20, 23], function names [9], and jump tables [21], exhibit robustness in varying
optimization options and architectures, these approaches may falter when the number of constants
is limited or when repeated constants appear in distinct binaries, leading to reduced performance
in detecting TPLs. In contrast, function similarity-based approaches can detect every instance of
reuse by comparing all functions [22, 24, 28]. Unfortunately, the accuracy of isolated function
matching significantly declines as the number of similar functions increases and variations across
different optimization options and architectures, compromising the accuracy of the TPL detection
results. On the other hand, the detection granularity of existing approaches does not match the
reuse granularity. Current techniques generally set a threshold value for the entire binary [24, 28]
or source file [9, 21], and when the number of matched features reaches this threshold, the entire
binary or source file is considered to be reused. However, In numerous cases, software reuses only
a portion of TPLs (Partial Reuse) [9]. As a result, some small-scale reuse instances may be missed
because the threshold is not met, and some libraries with a large number of similar features may
be mistakenly reported, causing false negatives and false positives, which are described in detail
in Section 2.2.

Secondly, the TPL detection results of current approaches are limited to the file-level granularity,
which is insufficient for uncovering complex reuse relationships and interferes with downstream
tasks. Complex reuse relationships may include partial reuse and pseudo-propagation reuse (the
relation between A and B in which both A and B reuse C), which is proposed in the previous
paper [21]. Existing approaches can only detect which TPLs are reused by the target software,
but cannot further detect which part of the code in TPLs is actually reused. These coarse-grained
detection results are not applicable to the need for fine-grained results for downstream tasks. For
instance, ModX [28] demonstrates that a large number of vulnerabilities are often concentrated in
a small portion of the software code. Users want to identify, which specific parts of the TPLs are
reused by the software for refined software management or to assess whether sensitive portions
(vulnerabilities or malware) of the TPLs have been reused. Developing and refining such methods
would significantly enhance the effectiveness of TPL detection and reduce the risks associated
with the undetected reuse of vulnerabilities or malware.

Thirdly, the datasets used in previous research for TPL detection tasks are in a single com-
piled environment [22, 24], limiting the evaluation of the robustness and scalability in real scenar-
ios. Even though existing works have gathered a substantial number of real-world binaries and

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

52:4 S. Liet al.

manually labeled the ground truth to analyze their accuracy, the TPL detection datasets are lim-
ited to default optimization options and a single architecture. In many situations, target binaries
are compiled from varying architectures and optimization options (e.g., binaries in firmware), but
existing works [22, 24] only evaluate the accuracy of the function similarity matching task rather
than TPL detection task under different compilation environments. The absence of diverse datasets
increased the difficulty of appraising the scalability of TPL detection approaches. To tackle this
issue, it is crucial to develop new datasets that encompass a broader range of optimization op-
tions and architectures, capturing the inherent variability and complexity of modern software
systems.

In this article, we introduce LibAM, a novel Area Matching framework that exhibits accuracy
and robustness across various optimization options and architectures and can detect exact reuse
areas. We find that if one function is reused, its callee functions are also reused. Therefore, different
from existing works that rely on function granularity matching, we leverage the function call
relationships to connect isolated functions into areas on FCG and compare the similarity of these
areas rather than single functions to judge reuse. Function inlining, function call deletion, and
other changes from the compiler that are fatal to isolated function matching, have little effect on
the graph similarity of FCGs. There are two primary modules in LibAM: Area Generation and Area
Comparison. This innovative framework can be effectively employed for two tasks: TPL detection
and Reuse area detection. The former aims to detect which TPLs are reused by the target binary,
and the latter aims to detect which functions (exact reuse areas) of the target binary are from TPLs.
LibAM takes target binaries and TPL binaries as inputs, and finally outputs which TPLs are reused
in target binaries and a list of reused functions. Therefore, LibAM can provide specific reuse areas
for each TPL detection result, thus providing interpretability and being used to detect complex
reuse relationships.

In detail, LibAM commences with conducting a comprehensive comparison of all target func-
tions and TPL functions through a vector-searching technique. Subsequently, the anchor extension
phase enables the connection of previously isolated function nodes into areas on the Function
Call Graph (FCG). Finally, LibAM assesses whether a particular area has been reused by cal-
culating the similarity of function areas. LibAM outputs candidate TPLs for the TPL detection
task while generating a reused function name list for the Reuse area detection task. Note that
the novel area detection task can help analyze complex reuse relationships, and we obtain two
interesting findings based on this in Section 4.8. In addition, we show that by detecting exact
reuse areas, vulnerabilities can be associated by matching vulnerable functions rather than by
matching vulnerable TPLs, which filters false positives for vulnerability associations caused by
partial reuse.

We evaluate LibAM and the state-of-the-art (SOTA) works including LibDX, B2SFinder, ISRD
and LibDB using the public dataset from a previous article [9] as well as the first dataset for differ-
ent optimization options and architectures built by ourselves. Our experiments show that LibAM
outperforms all existing TPL detection works and beats the SOTA work [23] by an average of 24%
in precision and 36% in recall even across different optimization options and architectures. More-
over, compared to previous methods, which failed in the exact reuse area detection task, LibAM
has demonstrated the feasibility of doing so with 0.99 precision and 0.844 recall. We further eval-
uate the ability of area matching to detect the exact reuse area for complicated reuse relationships
and downstream tasks by detecting reuse relationships in large-scale IoT firmware and associat-
ing vulnerabilities introduced due to TPL. ModX [28] shows that a large number of vulnerabilities
are often in a small part of the software code. By detecting specific reuse areas, we can deter-
mine whether vulnerable functions are reused, thus avoiding false vulnerability associations due
to file-level reuse detection.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

LibAM: An Area Matching Framework for Detecting Third-party Libraries in Binaries 52:5

/ Target Binaries \

FirmWare
Target
Binaries o Y\ .
’ \ N
¥ ¥ By
TPL1 TPL 2 TPL3
' . a
! I' t' A
/ , R
SOURCEFORGE VC . .
p g TPL PR PR S PR I
Binaries ’ vul 1 ‘ Va2 vuls e

N ... O GitHub

Fig. 1. Application scenarios of LibAM. LibAM takes target binaries and TPL binaries as inputs. Target bina-
ries are extracted from firmware and software, while TPL binaries are collected from package management
platforms or manually compiled. The output of LibAM is the TPLs and reuse areas of the target binaries (in
yellow in the figure), which can be further associated with vulnerabilities.

We summarize our main contributions below:

—We propose a novel framework LibAM, which represents a significant improvement over
all existing TPL detection works both in the public real-world dataset and in different op-
timization options or architectures.

—To the best of our knowledge, this is the first work to attempt to detect the exact reuse area
which is beneficial for downstream tasks.

—We build the first dataset in different optimization options and architectures for TPL de-
tection, which allows us to evaluate the robustness of existing works.

—We evaluated the scalability of LibAM using a large-scale real-world IoT firmware dataset
and generate potential firmware vulnerabilities to show one application of LibAM.

The remainder of the article is as follows: Section 2 introduces the problem description, mo-
tivation and notations of this article. Section 3 describes the design details of LibAM. Section 4
compares LibAM with existing TPL detection techniques. Section 5 discusses the results and lim-
itations of LibAM. Section 6 presents related work.

2 PRELIMINARY
2.1 Problem Description

TPL detection takes the target binaries and widely used TPL binaries as input, and attempts to
detect which TPLs are reused by the target binary. We aim to design a generic approach that can
solve the TPL detection task for C/C+ binaries in multiple scenarios.

Firstly, we want to detect TPLs in target binaries that come from both software and firmware as
in Figure 1. Binaries in software tend to be compiled in a single architecture (e.g., B2SFinder [21]
only detects PE files under Windows). However, binaries in firmware tend to come from different
architectures and raise the demands for TPL detection technology. Note that both binaries in soft-
ware and firmware are stripped and we cannot extract function names by traditional tools like nm.
Our proposed method is designed to address these challenges by enabling the detection of TPLs
in target binaries from various optimization and architectures.

Secondly, our approach aims to detect TPLs that are reused through dynamic links, static links,
and direct copies. For dynamic links, target software or firmware retains dynamic link library files,
such as .dll or .so files, within the file directory. We build a TPL database consisting of commonly
used dynamic link library files and utilize the dynamic link library files in the target software or
firmware as the target binary for detection purposes. For static links or direct copies, intricate

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

52:6 S. Liet al.

reuse relationships present challenges for TPL detection. To overcome this, we gather binaries
from prevalent C/C++ projects to create the TPL database, subsequently detecting which sections
of code in the target binaries originate from these TPL binaries. It is worth noting that these target
binaries may make minor modifications to the reused TPL, for example, some binaries slightly
modify the reused code to remove string-print instructions without changing the semantics. As in
the case of minizip, which removes the string-print instructions in the BZ2_BlockSort function of
bzip2. We aim at identifing similar areas from massively different codes and overcome minor mod-
ification differences. For drastic changes that severely affect the semantics, it is a serious challenge
whether code with large changes is considered reused and how to recognize them even for hu-
mans, which is outside our dataset and our goals. We only consider minor reusable code changes
in the public dataset from previous work [22].

Thirdly, we aim at detecting both reused TPLs and reused code areas. Prior work on TPL de-
tection could not ascertain which portions of code in TPLs were reused, a limitation we term as
poor interpretability of TPL results. Research [9, 21] has demonstrated that a large number of
TPL reuses are partial, and file-level TPL detection results cannot determine if sensitive parts (e.g.,
vulnerable code or malware) are reused. This limitation obstructs numerous downstream tasks,
including 1-day vulnerability correlation, malware detection, software plagiarism detection, and
more. Our approach tends to identify which sections of code in the target binary reuse specific
parts of the code in the TPL, providing interpretable evidence for the TPL detection results. Ad-
ditionally, since function names in TPL binaries are accessible, by gathering patch information
from the NVD, we can detect if vulnerable functions are present in the reuse areas by comparing
the reused TPL function names with vulnerability names, even when the function names in tar-
get binaries are stripped. For the TPL detection task, we collect widely reused TPL binaries and
determine which of them are reused. For the Area detection task, we pinpoint which functions of
the target binaries originate from TPLs, and we can obtain the reused function names since the
corresponding function names in TPLs are readily available.

2.2 Motivation

In light of the limitations of existing TPL detection methods, our primary objective is to develop a
novel TPL detection framework that demonstrates accuracy and robustness across a diverse range
of optimization options and architectures. Furthermore, our proposed approach aims to detect ex-
act reuse areas, enabling more precise and fine-grained analysis of TPL reuse in software systems.
To achieve this, we draw upon insights from the patterns of function reuse observed in real-world
software applications in ISRD [22].

We have found that when a particular function is reused, its callee functions are also frequently
reused. As illustrated in Figure 2, for example, since Minizip reuses the function BZ2_bzCompress
from Bzip2, the callee functions of BZ2_bzCompress are also reused. This observation suggests that
leveraging function call relationships may provide a more accurate and robust approach to TPL
detection compared to existing methods, which primarily rely on isolated function granularity
matching.

Besides, there are many partial reuses in the actual scenario, and the reuse proportion is much
smaller than file-level TPL. In Figure 3, due to the fact that snkfile2k is mostly reused as test binaries
within the project, we have shown the reuse proportion of 41 reuse relationships in Dataset_ISRD
(A TPL dataset from previous work [22], which is described in detail in Section 4.1), except for
snkfile2k related reuse. It can be seen that over half of the reuse relationships only reuse less than
half of the functions in TPLs, and these partial reuses may have a serious impact on the TPL
detection results obtained by matching isolated functions.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

LibAM: An Area Matching Framework for Detecting Third-party Libraries in Binaries 52:7

Minizip
mz_stream_bzip_write | -»{ mz_stream_bzip_compress | 1 TPLAPI
mz_stream_write }—>{ mz_stream_is_open ‘ [Jreused func
other func

BZ2_bzCompress | [handle_compress_isra_2_| BZ2 blockSort

add_pair_to_block BZ2_hbAssignCodes
BZ2_compressBlock bsPutUInt32

[BZ2_hbMakeCodeLengths —{ BZ2_bz__ AssertH_fail |

Bzip2

\ BZ2_bzbuffToBuffCompress

[BZ2_bzwrite][BZ2_bzWrite

BZZ_szompressH handle_compress_isra_2 ‘

add_pair_to_block

bsPutUInt32
BZ2_hbMakeCodeLengths | [BZ2_bz__AssertH_fail |

BZ2_bzWriteClose

‘ BZ2_bzclose

compressStream

BZ2_bzWriteClose64

Fig. 2. A motivation example for LibAM. The upper part depicts a portion of the FCG for Minizip, while the
lower part presents a portion of the FCG for Bzip2. Each block represents a function, with yellow blocks
indicating the reused TPL API functions and gray blocks denoting functions that are reused alongside the
API functions.

0.9
0.8
0.7
@
© 0.6
?
5 0.5
3
304
o
0.3
0.2
0.1
0.0 Qa - 9 U 09 VU NLE OO] 2 2 a0) Qo0 Qo NNOD) N o
= = = o e oo~ = =2 = o oo o o
T5 g2 22322 =] 2 oy N2
EEENORAE S NE e SRR eEENNsEeSRENEENas888E
EEEN NN E SN g 153 EES S N egs 88 | 2258
2 |ef < N8 B CEES 25NN |2 3E
§656cs 5655 £ET 28 |cs'g6 |22 5 s8E | E7
55222525 |685s |55 /58E82 |IE550 | 152§ 2 |
OO g G aoc o <C cc 29 o2 GC g9 22 S0 < [N |‘._Y__C = 8< ag < c
cc 5880505095 oEeo0ac c Q.9 O 8 © c N ENUE_QQ.UU
82338889 8ERE82agM8838:c88¢2ss5c5c53E¢5:c¢F “gsREGE
o - o N s o Q 89 90U = o o — o U o
o N ¢ a2] 2 8 @ S R 0o 2 x 2 ogenNEC < o 9 -
€7 e 52 8§ 5%t § 2 - s¢gf ¢ 3Ngg 29589 52 §%73
2 = e "2 =2 E |2 NaT g £e s8¢
- Q 3
2 2 E 5 = = B
E] 2

Fig. 3. Reuse proportion in Dataset_ISRD. We manually analyzed the reuse areas of each reuse relationship
in Dataset ISRD and counted the number of reused TPL functions and the total number of TPL functions.
The quotient of the two values is the reuse proportion.

Building on these insights, we propose a novel approach that connects isolated functions into
areas on the FCG based on their call relationships and compares the similarity of these areas, rather
than single functions, to determine reuse. Unlike LibDB [24], which uses a simple rule that TPL
with three connected functions on FCG are reused, we want to compare the structural similarity
and node alignment of the function areas on FCG. We found an overlapping phenomenon in LibDB,
which is described in detail in Section 3.2.2, and we propose an Anchor Alignment algorithm to
solve the overlapping problem of LibDB by comparing the structural similarity of areas through
GNN and subjected to the RANSAC algorithm [29] in the field of image alignment to generate a
one-to-one correspondence of area node correspondence.

Moreover, LibDB [24] shows that there may be many false negatives and false positives during
the function-matching phase. However, the Area Matching framework can effectively revise these
mistakes, thus mitigating the impact of varying optimization options and architectures on TPL
detection accuracy. What’s more, we seek to evaluate the ability of area matching to detect the

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

52:8 S. Liet al.

Area Gener?tion Module Area Companison Module

1

O unmatched function
© anchor (matched function)
@ function in reuse area

m

Target Binary

Anchor Target FCG Anchor Target FCG Area Target FCG ' o
Detection Extension Comparison H %@
IR

e

B L. —

TPL Binaries

TA
|

Reuse Area

TPLFCG TPLFCG TPLFCG Reused TPL

Fig. 4. The workflow of LibAM. We mark the matched function as gray on the FCG. After the Area Gen-
eration module, we represent the areas connected by anchors as dashed boxes. After the Area Comparison
module, the reused functions in the correct area are marked as yellow.

exact reuse area for complex reuse relationships and its implications for downstream tasks, such
as vulnerability analysis and software management. For instance, ModX [28] demonstrates that
a large number of vulnerabilities are often concentrated in a small portion of the software code.
By detecting specific reuse areas, our approach can determine whether vulnerable functions have
been reused, thereby avoiding false vulnerability associations that may arise from file-level reuse
detection.

2.3 Definition

To ensure a more coherent presentation and facilitate comprehension, this section focuses on stan-
dardizing the terminology employed throughout this article. The detected binary extracted from
software or firmware is called target binary while the binary in the TPL database is denoted as
the TPL binary. Additionally, the Control Flow Graph (CFG) is abbreviated as CFG and the
Function Call Graph as FCG. Furthermore, the Attributed Control Flow Graph (ACFG), which
is a concept leveraged by Gemini [30], is designated as ACFG. Finally, we define the Anchor and
Reuse Area to facilitate a clearer explanation of the algorithm.

2.3.1 Anchor. In the process of generating and comparing areas, our initial step involves match-
ing functions in the target binary and the TPL binaries by employing a function similarity calcula-
tion method. Functions that are successfully matched are termed anchors, while a pair of matched
functions (one originating from the target binary and the other from the TPL binary) are referred
to as an anchor pair. As illustrated in Figure 4, the gray nodes on both the target FCG and TPL
FCG, following the Anchor Detection phase, signify anchors.

Formally, let Fiarger represent the set of functions extracted from the target binary, and Frpr
denote the set of functions from the TPL binary. The function similarity calculation method is
denoted as Sim(f;, f;), where f; € Frarget, fj € FrpL. An anchor a is a function in Fiyreer that suc-
cessfully matches with at least one function b in Frpr, according to the similarity threshold 6:

ac ﬁarget, b e 7:1‘PL : Sim(a, b) > 63. (1)

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

LibAM: An Area Matching Framework for Detecting Third-party Libraries in Binaries 52:9

An anchor pair (a, b) is formed by an anchor a and its matching function b from Frpy.

2.3.2 Area. We connect the isolated anchors and all their sub-functions on FCG to generate a
function list, which we term the function area. In essence, the function area is a node list that
encompasses all nodes reachable from a selected anchor node on the FCG. It is essential to note
that we generate two distinct areas for each anchor pair: one being the target area and the other
the TPL area.

Given an anchor pair (a, b), the target area A(,) and candidate area A;) are formally defined
as

A(a) = {f € Frarget | there exists a path from a to f in FCGarget}, (2)

Ay = {f € Feandidate | there exists a path from b to f in FCGeandidate }- (3)

Our approach compares function areas, rather than isolated functions, to detect TPLs more ef-
fectively. The final list of detected reused functions is referred to as the reuse area. In Figure 4,
the functions enclosed within the dashed box constitute the areas.

3 METHODOLOGY
3.1 Overview

We propose a novel Area Matching framework, LibAM, for detecting both the TPLs and exact reuse
areas in the target binary. The workflow of LibAM, presented in Figure 4, consists of two modules:
Area Generation (Section 3.2), and Area Comparison (Section 3.3). We take a target binary and
TPL binaries as inputs, and LibAM generates a reused TPL list and a reused function list (reuse
area) for the target binary after detection.

In the Area Generation module, we create several areas for both the target binary and TPL bi-
naries. The initial step involves extracting functions and FCGs from the target binary and TPL
binaries using IDA Pro [31]. Then, we conduct a comparison of the functions. Functions that are
successfully matched are considered anchors. To expedite the function-matching process, we em-
ploy annoy [32], a high-speed vector searching engine. Subsequently, we establish connections
between anchors and their callee functions on FCG, generating a function area for each anchor. It
is important to note that function areas are generated in pairs: one area corresponds to the matched
functions within the target binary and the other is associated with the corresponding functions in
the TPL binaries.

In the Area Comparison module, we calculate the similarity between each target area and its
corresponding TPL area to determine whether it constitutes a reuse area. The similarity is calcu-
lated based on two factors: structural similarity and alignment length. We employ Embedded-GNN
(Section 3.3.1) to calculate the structural similarity and our Anchor Alignment algorithm
(Section 3.3.2) to compute the alignment length. Ultimately, we ascertain whether an area is gen-
uinely reused by considering these two factors.

Finally, after detecting the reuse areas between the target binary and every TPL binary, LibAM
generates a reused TPL list for the TPL detection task and a reused function list for the Area
detection task. Although the functions in the target binary are without names, LibAM can use the
corresponding function names in TPLs to generate the reused function list.

3.2 Area Generation

In this section, our target is to identify similar functions between the target binary and the
TPL binaries by employing function similarity calculation techniques and subsequently generate

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

52:10 S. Liet al.

LN T iterations
BIN

. p1
Target Binary

IDA

cosine(u1, p2)

y=(+1,-1)

E

TPL Binaries
Structure2Vec Siamese Network
Fig. 5. Network structure of Structure2Vec. We input the function ACFGs from both target binaries and TPL
binaries into the GNN. After T iterations, output vectors are obtained and vector similarity is calculated using
cosine similarity. In the figure, the parameters of the two GNNs are shared, forming a Siamese network.

areas for these functions. First, we carry out the anchor detection phase to compare the functions.
Following this, we conduct an anchor extension phase to generate areas for each of the identified
anchors.

3.2.1 Anchor Detection. Existing works [22, 24] directly filter these matched functions as reuse
detection results. Although function similarity matching can distinguish homologous functions
from non-homologous functions, its accuracy degrades severely with an increasing number of
non-homologous similar functions, as well as in different optimization options and architectures.
Instead, we propose taking the matched functions as anchors and connecting the isolated functions
into areas on FCG for further comparison.

As same to previous works [24, 28], we choose the improved Gemini in LibDB [24] as our func-
tion similarity calculation approach for several reasons. Firstly, previous TPL detection works,
such as LibDB [24] and ModX [28], have utilized Gemini for matching tasks, which is a fast and
scalable method. Besides, LibAM aims to detect TPLs by comparing areas on FCG, and we focus on
the improvement brought by area similarity compared to function similarity. Therefore, we leave
the enhancement of the new function similarity matching tool itself for future work. Finally, our
experiments have demonstrated that with the addition of area comparison framework, Gemini can
deliver very good results and it is easy to replace Gemini with new function similarity calculation
works to obtain more suitable anchors for specific scenarios in the future.

As in LibDB [24], we first extract a 7-dimensional vector for each basic block by calculating
7 types of statistical information: the number of the string constants, numeric constants, trans-
fer instructions, call instructions, all instructions, arithmetic Instructions, and offspring numbers.
Then, we use each 7-dimensional vector as a node on CFG to transform the function into an ACFG,
which is generated for each function that has block numbers above 5 and instruction numbers
above 10 in both the target binary and TPL binaries. Finally, we input the ACFG into the Struc-
ture2vec network to obtain the vector representation of the function. The structure of the GNN
network is as in Figure 5. We utilize Dataset_OSS in Section 4.1 to train the Siamese architecture
of two Structure2vec networks with shared parameters and optimize it using triplet cosine loss of
Equation (4). Further details can be found in LibDB [24].

1 m
Loss = P Zol max (cos (a, n) — cos (a,p) + €,0) . (4)

In Equation (4), m represents the batch size during training, cos(a, p) represents the cosine sim-
ilarity between binary function vectors of different compilation options or architectures that are

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

LibAM: An Area Matching Framework for Detecting Third-party Libraries in Binaries 52:11

Target Function

ACFG

Function

Function Pair - Compare - Area Pair

TPL Function ' ' TPL Area

TPL FCG TPLFCG

Fig. 6. Schematic diagram of the Anchor Extension phase.

compiled from the same source code, and cos(a, n) represents the cosine similarity between func-
tion vectors of different source codes. € is a constant above 0, here we choose 0.2 as in LibDB.

Finally, we calculate the cosine similarity between all function vectors in the target binary and
TPLs. Based on our experiment, we set a reasonable threshold of 0.72, which can best distinguish
positive samples from negative samples in Dataset_OSS. When the cosine similarity between two
functions exceeds 0.72, we consider these functions as anchors. Besides, we use the annoy en-
gine [32] to accelerate vector searching. TPL’s function embedding process can be performed
offline and stores all function vectors in a vector database. For each function of the target bi-
nary, we use annoy to retrieve it in the vector database for a fast function comparison. As same
in LibDB [24], we filter top-200 TPLs for each target binary and top-100 TPL functions for each
target function to further accelerate the vector searching phase. The details of thresholds are in
Section 4.

3.2.2 Anchor Extension. After the anchor detection phase, we generate an anchor pair list,
where each anchor pair consists of a function in the target FCG (target anchor) and the corre-
sponding function in the TPL FCG (TPL anchor). In other words, the anchor list represents the
matched nodes between the two FCGs. The goal of this phase is to generate an area for each
anchor.

The existing works take anchors directly as the result of TPL detection, but the results are not
ideal due to a significant number of false positives and false negatives in anchors [24]. To address
this issue, LibAM aims to use the function call relationships to link isolated function nodes into
areas on FCG. Our observation indicates that when a function is reused in the target binary, its
callee functions are reused together.

Based on this insight, in Figure 6, we treat the anchor and all callee functions as an area and
compare the whole area to detect TPLs. The Area Comparison module takes function pairs as input
and generates an area pair including a target area and a TPL area for each function pair. Note that
the target area is a function list without function names while the TPL area is a function list with
function names. After the Area Comparison module, we can get a reused function name list for
the target binary.

3.3 Area Comparison

After obtaining two areas of the anchor pair, we aim to compare the similarity of the two areas
to determine whether they are reuse areas. We calculate the area similarity by using two factors:
the structural similarity S and the alignment length factor L. We set two separate thresholds for

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

52:12 S. Liet al.

A Y
Function ' Area
Vector : Vector
\ Function ACFG \ 4 F L 4
[GNN ’ [GNN ’
A \I A
1
1
Function 1 Area
g Vector ; Vector
\ Function ACFG) \ J

Fig. 7. The architecture of Embedded-GNN. The GNN is a Structure2vec network, which is the same as in
Figure 5. We use the Function Vector for anchor detection in Section 3.1 and use the Area Vector to calculate
the Area structure score in Section 3.3.1.

them and only when both the structural similarity and the alignment length factor exceed the
thresholds, we consider the areas as actual reuse areas. We will now describe the details of the two
factors. The details of thresholds are in Section 4.

3.3.1 Structural Similarity. We leverage an Embedded-GNN to generate vectors for areas and
regard the vector cosine similarity as structural similarity S. The GNN is the same Structure2vec
network as in Section 3.2.1. Note that the vector of the function node in the area is just the vector
in Anchor Detection, as in Figure 7.

Structure2vec operates on the principle of leveraging graphical model inference methodologies,
where features associated with individual vertices, represented by x;, undergo a systematic ag-
gregation process that adheres to the underlying graph topology. After multiple rounds of this
recursive procedure, an innovative feature representation (also known as an embedding) is gener-
ated for each vertex, effectively capturing the complex interdependencies among vertex features
as well as the intrinsic properties of the graph structure. The training procedure can be broadly
divided into three main steps: initialization, iterative neighborhood aggregation, and optimization
using a supervised learning objective.

Firstly, we initialize the node embeddings using a node feature matrix. This matrix contains
initial feature vectors for all nodes in the graph. The initial embeddings serve as a starting point
for the iterative neighborhood aggregation process that follows.

Then, at the heart of Structure2Vec lies the iterative neighborhood aggregation process, which
updates node embeddings based on the information aggregated from neighboring nodes. This is
achieved through a message-passing framework that recursively updates node embeddings. Dur-
ing each iteration, nodes aggregate information from their neighbors by using a neural network-
based aggregation function, and their embeddings are updated accordingly. The aggregation pro-
cess can be formally described as

1 = AGGREGATE(1;"™V : j € N(i)), (5)

where y;(*) is the updated embedding of node i at iteration ¢, N(i) denotes the set of neighbors
of node i, and AGGREGATE is the neural network-based function as in Figure 5. This process is
repeated for a fixed number of iterations T, culminating in the final embeddings ;;(7) : i € V as
the area presentation.

Finally, Structure2Vec employs a supervised learning objective that maximizes the similarity
between embeddings of homologous areas. In detail, we initially selected all the binary FCGs
in Dataset_OSS and sampled areas on those FCGs. We selected the nodes with more than five

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

LibAM: An Area Matching Framework for Detecting Third-party Libraries in Binaries 52:13

Target FCG Target FCG

TPL FCG TPL FCG

(a) FCG with Overlapping (b) FCG after Anchor Alignment

Fig. 8. 8(a) is the target FCG (Above) and the TPL FCG (Below) before Anchor Alignment while 8(b) is after
that. The gray nodes are anchors and the yellow nodes are aligned nodes. The dotted lines are the matched
relations of anchors.

adjacent nodes on FCG as the initial nodes for each area. For training the GNN for FCG embed-
ding, we treated the homologous areas as positive samples and utilized the areas obtained from
non-homologous FCG sampling as negative samples.

After that, we leveraged the trained reuse area embedding model to generate vector represen-
tation for function areas after the Area Generation module. Similarly, we regard the vector cosine
similarity between the target area and TPL area as their structural similarity score S. Two areas
are considered structurally similar if S is greater than a threshold value of 0.8. The threshold value
is set in Section 4.

3.3.2 Anchor Alignment. After calculating structural similarity, numerous non-homologous
functions with similar structures and similar areas still exist, leading to false positives and false
negatives in TPL detection results. Considering the importance of one-to-one matching of nodes
between two areas in the graph-matching domain, we explore the potential for improved TPL de-
tection by considering the number of matched anchor pairs. Intuitively, an area is more likely to be
areused area if it has a higher number of matched anchor pairs. We refer to the approach in previ-
ous work LibDB [24], where they determine the reuse by detecting whether the matched nodes on
the FCG have three common edges. However, LibDB [24] suffers from an overlapping problem,
which is discussed in detail below. In order to solve the overlapping problem and compute a more
accurate number of aligned nodes between areas, we propose an Anchor Alignment algorithm to
compute the similarity by computing the maximum length of a one-to-one alignment relation of
matched nodes in two areas.

One of the challenges encountered is the overlapping phenomenon. Because all function pairs
whose similarity is larger than the threshold are seen as anchor pairs during the anchor detection
phase, one target function may be associated with multiple candidate TPL functions while other
target functions may only be related to one candidate node, which is called overlapping. For
example, in Figure 8(a), nodes A and C on the TPL FCG have three matched nodes on the Target
FCG. To address this issue, a naive approach would be to enumerate all matching combinations
to obtain all groups of aligned areas. However, this approach is computationally intensive and
time-consuming due to the vast number of possible combinations.

To tackle this problem, we propose the Anchor Alignment algorithm, which calculates the
longest list of anchor pairs without overlapping. We define the length of the longest anchor pair
list as the alignment length. In Figure 8, the ideal list is [(1, A), (2, B), (3, C), (4, D)] and the
alignment length is 4.

We refer to the RANSAC algorithm [29] in the field of Image Alignment [33, 34], which aims
to find the mapping relationships of points in two images. Nevertheless, Anchor Alignment is
different from Image Alignment in that we do not calculate the Homograph Matrix [35] (a 3*3

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

52:14 S. Liet al.

matrix used to rotate all points in one image to another), but the alignment length. The pseudo-
code for Anchor Alignment is in Algorithm 1. The function get_descendants is to get all descendant
nodes. We use the function random.sample in Python to get the random anchor from nodes in the
area. The function get_related_tpl aims to get the anchor pair of target anchor a;4, cni1g With the
matched TPL anchor in A;j; gesc that has the most descendant nodes.

First, every candidate TPL from the Area Generation module has an anchor pair list A, and its
members are anchor pairs that correspond to the dashed line in Figure 8. The anchor pair list
in Figure 8 is [(5, A), (1, A), (6, A), (6, C), (3, C), (4, C), (4, D)]. Then, we perform the Anchor
Alignment algorithm for each anchor pair in A. We take the anchor pair as the current generation
and iteratively search for the next generation anchor pair and use it as the new current generation.
As in lines 15-28 in Algorithm 1, we randomly select an anchor pair (a_tar, a_tpl) in the area of
the current generation as the

ALGORITHM 1: Anchor Alignment

Input: anchor pair(asqr, arp 1), anchor pair list A, target FCG g;4, and TPL FCG 9rpl
Output: the max number of aligned anchor pairs I;4x

1 Function AnchorAlignment (atar, arpi, A grars Gepl)t

2 lmax = 0, n = 0;

3 while True do

4 | = Alignment(atqr, aipls A, Grars Gipl);
5 if [> lp4x then

6 ‘lmax:l,n:O;
7 else

8 L n+=1;

9 if n >= 100 then

10 L break;

11 return Iy ax ;

12 end

13 Function Alignment (a;qr, aipls A, Grars Gipl):

14 N =0;

15 Atar dese = get_descendants(atar, gtar);

16 Atpl:desc = get_descendants(a;py, 9rp1);

17 aar_child = random.sample(A;qr desc, 1);

18 Arpl_child = get_related_tpl(arar_childs A Arpl_desc)s
19 if is_not_empty(asp;_chiia) then

20 | N+ = 1+Alignment(asar chitd> Gtpl_child> A Grars 9epl);
21 else

22 ‘ return N;

23 end

24 return N;

25 end

next generation and make sure they are not overlapped. For instance, (3, C) and (4, D) are not
overlapped while (3, C) and (4, C) are overlapped. Next, we record the alignment length [of the
new list if [> [,,,4 and re-select iteratively. Finally, we stop the iteration when the number of
iterations n reached 100 without [,,,,, updating.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

LibAM: An Area Matching Framework for Detecting Third-party Libraries in Binaries 52:15

After alignment, we obtain the longest alignment length for each area. In Figure 8, the ideal list
is [(1, A), (3, C), (4, D)]. Since node (2, B) misses in the anchor detection phase, the final longest
alignment length is 3. However, LibAM is robust to misses and false positives of function matching,
which does not affect the final result too much. We then set the threshold n and judge to reuse
when the alignment length L is more than n. Based on the evaluation in Section 4, we set n = 3.
By employing the Anchor Alignment algorithm, we can effectively address the overlapping issue,
contributing to a more accurate and efficient TPL detection process.

Finally, we consider areas with anchor function similarity, area structural similarity, and area
alignment length all above the thresholds as reuse areas. We record the list of reused TPLs for the
TPL detection task and the list of reused functions for the Area detection task.

3.4 Optimization Strategies

Moreover, we discuss the optimization strategies for both the TPL detection and Area detection
tasks. Our aim is to make LibAM lightweight and efficient while maintaining its accuracy and
robustness. We incorporate various techniques, such as the Annoy vector search engine, to speed
up the comparison of functions and areas, as well as employ a speedup strategy for the anchor
alignment algorithm. By doing so, LibAM can efficiently handle situations where the size and
number of areas are huge. These optimizations are detailed below:

For the TPL detection task, in each combination of target and TPL binaries, we iteratively select
a pair of candidate areas randomly to compute their structural similarity and alignment length.
Once both the structural similarity (S) and alignment length (A) of the candidate area surpass the
designated thresholds, we can conclude that the target binary reuses the TPL and terminates the
loop. Then, we move on to the next combination. This strategy significantly reduces the compu-
tational overhead and speeds up the TPL detection process. No matter how large the area is, once
the alignment length exceeds the threshold, LibAM can return the result.

For the area detection task, we only perform area detection for the detected tuples (target bi-
nary, TPL binary) after the TPL detection task. We begin by ranking the areas generated during
the Area Generation module in descending order, based on their size. When a larger area is iden-
tified as reused, any smaller areas contained within it are not repeatedly computed, which further
avoids the impact of an excessive number of areas. Moreover, if an area matches with multiple ar-
eas simultaneously, we select the one with the highest alignment length and structural similarity
score as the final reused area. This approach not only reduces redundancy in computation but also
ensures a more accurate area detection result.

4 EVALUATION

In this section, we elaborate on the evaluation process of our proposed approach, LibAM, and
discuss its accuracy in various tasks as compared to SOTA works. We provide a comprehensive
analysis, including an investigation into the bad cases of existing works, and identify the reasons
for their shortcomings. Before that, we describe our experimental setup, the dataset used, and the
tools employed for disassembly and coding.

In the experiments, we aim to answer the following research questions:

RQ1: How does LibAM perform in the TPL detection task in the public real-world dataset
compared to other works?

RQ2: How does LibAM perform in the Area detection task in the public real-world dataset
compared to other works?0

RQ3: Is LibAM robust in detecting TPLs in different optimization options and architectures?

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

52:16 S. Liet al.

RQ4: How do the individual components of LibAM impact the final accuracy?
RQ5: How efficient is LibAM compared to other works?
RQ6: How does LibAM perform in detecting TPLs in large-scale real-world firmware?

First, let us describe the experimental setup and the dataset used for evaluation. We employed a
high-accuracy computing environment to ensure accurate and efficiency evaluation. The system
runs on Ubuntu 22.04 and is equipped with an Intel Xeon 128-core 3.0 GHz CPU, which includes
hyperthreading capabilities. In addition, it has 1TB of RAM and two NVIDIA V100 32 GB GPUs.
This setup guarantees ample resources for the execution and comparison of different algorithms.
In fact, LibAM is lightweight and can even run on machines without a GPU. For the disassembly
of binaries, we used IDA Pro 6.8, a widely recognized disassembler and debugger. IDA Pro 6.8
has extensive capabilities to reverse-engineer and analyze binary files, making it an ideal choice
for our evaluation process. The code for our proposed method is primarily written in Python 3.6,
with the IDAPython code being in Python 2.7. This choice of languages allows us to leverage the
extensive library support and ease of use that Python offers.

In this evaluation section, we assess the accuracy of our proposed approach, LibAM, by using
widely-accepted metrics, namely Precision (P), Recall (R), and F1 score (F1). These metrics are suit-
able for determining the accuracy of our approach in detecting TPLs and reuse areas. In addition,
we performed statistical analysis of the results using violin plots and CDF (Cumulative Distribution
Diagram). In detail, TP presents the number of reused TPLs that are correctly detected as reused
while TN presents the number of unused TPLs that are correctly detected as unused. Besides, FN
presents the number of reused TPLs that are incorrectly detected as unused while FP presents
the number of unused TPLs that are incorrectly detected as reused. Moreover, the equations of
Precision, Recall, and F1 score are as follows:

TP

Precision = ——————, (6)
TP + FP
TP
Recall = ———, (7)
TP+ FN

Precision - Recall
F1=2.

Precision + Recall ®)

To maintain consistency and facilitate comparison, we preserve the vector dimension of both
the function and the FCG at the same level as in Gemini [30], with a dimensionality of 64. This
allows for a fair comparison between the accuracy of our approach and other Gemini-based works.

To identify anchor functions and assess the structural similarity of the FCG, we apply opti-
mal threshold values derived from the validation dataset in Dataset-I, which are 0.72 and 0.8, re-
spectively. These threshold values were determined through experimentation and analysis on the
validation dataset to achieve the best balance between precision and recall.

As shown in Figure 9, we randomly select a subset consisting of 400 function pairs and FCG pairs
from Dataset-I to provide a representative sample for our evaluation. The selected thresholds, 0.72
and 0.8, effectively distinguish between positive (homologous) and negative (non-homologous)
samples. This indicates that the threshold values are adept at identifying homologous code while
minimizing false positives and false negatives.

Furthermore, we set the alignment length threshold based on the number of common edges
employed in LibDB [24] with a value of 3, thus facilitating a comparison of the effectiveness of the
Anchor Alignment algorithm compared with the simple common edge filtering rule in LibDB [24].
This threshold serves as an additional criterion to ensure that the identified reusable TPLs have a

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

LibAM: An Area Matching Framework for Detecting Third-party Libraries in Binaries 52:17

400 x Negative sample -4 o K F T 400 x Negative sample *) e
+ Positive sample & U . = « Positive sample - L A
350 L o U 350 LRSS £ Wy
* * x b " ok wx
) iz w3 ¥
* * o™ * o T
300 *ox wra, i 300 . . SRS
*x R A * ta d
. weorE . ok
* P
250 . s TN 250 o Wk
Y ’t*':;‘**, * «*;,* *,%‘
) . . * bt :*’4*" o }*:**i
* * * * * . * %
200 Fx P x ¥* oy WA 2001 x v % o & xx Fal 2N
X KR e X NS T X
Xx Xx ixi« X, X X X % Xﬁig(xxx x x %
150 me”xgxxxx xx o xX 150 R ER R
% x
00| G S T * 100 T T
S S x w3 S “
X% ¥ X x x “x ggx 0 x KX
sof xR R X Tl 50 I i i I S
X By x X * xgxx x X igyxxxi& *
xxx%%x x % % % x XX % %X)§<x><><
0 x %85 X x x X 0 P Vik T T x
03 04 05 06 07 08 09 10 03 04 05 06 07 08 09 10
Fig. 9. The similarity score of 400 random function pairs (Left) and area pairs (Right).
Table 1. Dataset Scale
Dataset Binaries Target Binaries TPLs Contents Applications
Dataset_OSS 22,100 - - cross arch and opti software for traning
Dataset_ISRD 85 17 85 real-world software for TPL detection
Dataset_ExtISRD 289 204 85 cross arch and opti software for TPL detection
Dataset FW 12,915 12,699 216 real-world firmware for TPL detection

sufficient level of similarity. We further evaluated the impact of different values of this threshold
on LibAM in Section 4.6.

4.1 Dataset

In order to comprehensively evaluate the accuracy of LibAM in different environments, we lever-
aged one independent dataset for training our model and three additional datasets for evaluation
purposes. The details of these datasets are presented in Table 1.

Dataset_OSS: To develop a rich and diverse dataset for training our function embedding model
and Embedded-GNN network, we invested significant time and effort into crawling 260 commonly
used open-source projects from Github [3] and SourceForge [4]. We manually compiled these
projects into 22,100 binaries, encompassing three architectures (ARM, x86, x64) and four opti-
mization options (00, O1, 02, O3). This extensive dataset ensures that our model is well-trained
and capable of handling various real-world scenarios. We divide it into a training set, validation
set, and testing set in a ratio of 8:1:1.

Dataset_ISRD: To evaluate the ability of LibAM on existing public real-world datasets, we
leverage a real-world reuse dataset used by ISRD [22]. The dataset contains 85 binaries from 24 pop-
ular open-source projects across various domains, compiled with default optimization options in
x64, and includes 74 real partial reuses. This dataset is the only complete public TPL detection
dataset, as we know. While another TPL dataset used in LibDB [24] only contains a ground truth
file without corresponding binaries. Even though these target binaries originate from the Fedo-
raLib dataset [24], their names and version numbers in the ground truth file do not correspond to
those in the FedoraLib dataset, posing difficulties in utilizing this dataset for TPL detection. (for ex-
ample, vorbis in ground truth file while there are many confused binaries like libsox_fmt_vorbis.so,
libvorbis.so.0.4.6, libvorbisenc.s0.2.0.9 and so on in FedoraLib.)

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

52:18 S. Liet al.

Dataset_ExtISRD: Recognizing the limitations of existing TPL detection datasets, we expanded
the ISRD dataset by manually compiling binaries for three architectures (arm, x86, x64) and four
optimization options (00, O1, 02, O3). This extended dataset, with 289 binaries and 477 real partial
reuses, enables us to assess the accuracy of LibAM under a broader range of conditions, thus
providing a more comprehensive evaluation of its capabilities.

Dataset_FW: To evaluate LibAM’s ability to tackle large-scale firmware TPL detection tasks,
we collected 167 firmware from 10 different vendors. Such kinds of firmware spanned various de-
vice categories, such as IP cameras, routers, and switches. We used Binwalk [36] to decompress
the firmware and extracted 12,699 binaries. This large-scale dataset allowed us to test the scalabil-
ity and applicability of LibAM in real-world situations, further demonstrating its scalability and
practicality.

By leveraging these four datasets, we were able to rigorously evaluate the accuracy of LibAM
in a variety of environments, ensuring that our model is adaptable and effective in handling real-
world challenges. The results from this comprehensive evaluation serve as strong evidence for the
suitability of LibAM for deployment in practical TPL detection tasks.

4.2 Compared Methods

In this evaluation, we introduced the comparison between LibAM and various existing methods,
examining their strengths and weaknesses in different scenarios. We aimed to provide a compre-
hensive assessment of the accuracy of both constant-based works and function similarity-based
works, and to demonstrate the effectiveness of LibAM. The comparison methods are further elab-
orated on below:

LibDX: LibDX [23] has the advantage of being a simple and fast TPL detection approach. How-
ever, its reliance on constant features, specifically strings, might result in limited detection capa-
bilities when dealing with binaries with few strings. Additionally, this approach may produce false
positives when the logical blocks in the target binary and TPL are coincidentally similar.

B2SFinder: B2SFinder [21] boasts a comprehensive range of constant features, allowing it to
perform a more in-depth analysis when detecting TPL reuse. However, this approach may suffer
from increased computational complexity and time cost due to the increased number of features it
employs. Moreover, as a constant-based work, B2SFinder still faces performance degradation from
binary with fewer constant features.

ISRDGemini: ISRD [22] checks if more than half of the functions in the TPL match the functions
in the target binary to determine reuse. However, as ISRD is limited to detecting TPLs in cross-
architecture environments and has no open-source version available, we did not perform a direct
comparison between LibAM and ISRD. Instead, we use Gemini [30] as a baseline with the strategy
of ISRD, which is called ISRDGemini- Note that, LibAM focuses on the work after function matching
and can simply replace Gemini with ISRD to detect anchors in a single environment.

LibDB: LibDB [24] adds FCG information to perform simple filtering of function matching re-
sults. It detects if there are more than three matched functions on the FCG to determine reuse.
Unlike LibDB, which performs a simple filter on isolated functions, LibAM connects the isolated
functions into areas to compare the structural similarity of areas and solves the overlapping prob-
lem of LibDB with the Anchor Alignment algorithm.

By comparing LibAM with these existing works, we were able to highlight the advantages and
unique features of our approach. As for ModX [28], since it is not open source and it focuses on
program modularity and reverse program semantic understanding, TPL detection is only one of its
application tasks, we did not implement it. Through this evaluation, we demonstrated that LibAM
outperforms other methods in various aspects, such as the ability to detect TPLs across different
environments, offering a comprehensive analysis through the Area detection task, and addressing

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

LibAM: An Area Matching Framework for Detecting Third-party Libraries in Binaries 52:19

Table 2. Accuracy on TPL Detection Task on Dataset_ISRD

Model LibDX B2SFinder ISRDGemini LibDB LibAM

p 0.920 0.692 0.304 0.534 1.0
R 0.809 0.644 0.518 0.920 0.993
F1 0.837 0.664 0.312 0.568 0.996

the overlapping issue using the Anchor Alignment algorithm. This comparison demonstrates the
effectiveness and superiority of LibAM in TPL detection tasks.

4.3 Answer to RQ1: Accuracy of LibAM in Public Real-World Dataset

In this evaluation, we test the accuracy of LibAM on public real-world Dataset ISRD. Table 2
reports the accuracy of LibAM in terms of precision, recall, and F1 score compared with other
works.

The results showed that LibAM achieved the highest precision and recall, with a precision of
1.0 and a recall of 0.993. Compared with other works, LibAM’s precision was 8.0% higher than the
second-ranking LibDX [23], and the recall was 7.3% higher than the second-ranking LibDB [24].
LibAM can accurately identify every reuse in Dataset_ISRD, and only the liblzg code area reused
by Izbenchis too small to cause LibAM to miss it. The reuse area detection in Section 4.4 can further
explain the good results of TPL detection.

To our surprise, LibDX [23] achieves the second-highest precision of 0.92 and a high recall of
0.809, demonstrating that continuous strings in binaries can provide weak semantic information.
The precision of B2SFinder[21] that uses more types of constant features is only 0.692 in precision
and 0.644 in recall. Although B2SFinder uses many types of features rather than just strings, the
use of thresholds for the entire file granularity makes both precision and recall significantly lower
than LibDX. Although LibDX can achieve good scores, it is still significantly lower than LibAM
due to the harsh conditions for ten continuous strings. For example, LibDX[23] cannot detect the
Izbench reuse from csc, because even if the number of common strings is large, the number of
continuous strings is only 2.

We analyzed the bad cases and find that both constant-based works [21, 23] have limitations in
real-world scenarios for two main reasons. Firstly, some reused binaries have few constant features,
such as the brotli code reused in Izbench. Additionally, some binaries slightly modify the reused
code to remove string-print instructions without changing the semantics. As in the case of minizip,
which removes the string-print instructions in the BZ2_BlockSort function of bzip2. Consequently,
both constant-based works fail to detect this reuse relation. To deal with this problem, LibAM uses
function matching and area matching to detect functions that do not contain or contain few strings.

Both the precision and recall of ISRDGemini[22] are the lowest, which proved that directly using
function similarity result as the TPL detection result cannot get a satisfactory result. Although
Figure 9 demonstrates that Gemini has a high ability to distinguish between pairs of functions
that are homologous and non-homologous, it is quite difficult to retrieve homologous functions in
large-scale functions, which is consistent with the results of jTrans [37].

To handle this problem, LibDB [24] leverages common edges in FCG to filter the function simi-
larity results and get a higher recall. However, LibDB [24] only uses three common edges to filter
functions, which is too simple to cause many false positives. Moreover, the overlapping phenom-
enon further aggravates the problem.

On the contrary, based on the function matching results, LibAM expands the comparison granu-
larity to the area on FCG and further detects the similarity of areas using area structural similarity
and anchor alignment length, so as to obtain good results.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

52:20 S. Liet al.

Table 3. Accuracy on Area Detection Task on Dataset_ISRD

Model LibDX B2SFinder ISRDGemini LibDB LibAM

P 0.779 0.519 0.250 0.613 0.985
R 0.291 0.372 0.573 0.719 0.847
F1 0.379 0.393 0.311 0.619 0.910

Answering RQ1: LibAM effectively detects TPLs in the public real-world dataset and outperforms all existing
works with a precision of 1.0 and recall of 0.993, which manifests that LibAM is powerful at detecting reused

code from a large amount of non-reused code.

4.4 Answer to RQ2: Accuracy of Detecting Reuse Areas and the Interpretable Evidence
for TPL Detection

In this evaluation, we employ Dataset_ISRD to evaluate the exact area detection ability of LibAM.
Three of us manually analyzed the exact reuse areas as ground truth over the course of a week.
Since neither the target binaries nor the TPL binaries in the ISRD dataset have deleted function
names, we can easily analyze which functions are reused and generate ground truth by function
names. However, the function names in some reuse areas may be slightly modified and cannot be
directly compared by string, so we manually filter them one by one to determine the exact reuse
areas.

As shown in Table 3, LibAM can accurately detect reuse areas by filtering at the function level,
area structure level, and area node level of 0.985 in precision and 0.847 in recall. In order to avoid
false positives, we set the areas with an alignment length of more than 3 to be recognized as reuse
areas, which makes some small areas easy to be missed, thus leading to the fact that recall is not
as high as precision. However, the results show that LibAM is able to detect accurate reuse areas
to support the interpretable TPL detection results.

The previous works only performed TPL detection without Area detection, so they cannot be
used directly for area detection, we simply modified existing work to support area detection and
compare them with LibAM. Specifically, we treat the functions that use the matched constant fea-
tures in LibDX and B2SFinder as reuse areas. For ISRDGemini, We just take matched functions as the
reuse area. For LibDB, we use the functions that satisfy the three common edges as the reuse area.

LibDX [23] still has the second-highest precision of 0.779, but its recall is only 0.291. Our analysis
of bad cases shows that a large number of matched strings are not called by functions in LibDX,
which makes it difficult to determine which piece of code is being reused.

The same problem occurs in B2SFinder [21], which uses a wider variety of features and has a
significantly higher recall than LibDX, but still only 0.372. This demonstrates that while Constant-
based works are convenient and effective, it is difficult to identify, which code areas are actually
reused, and these matched features are sometimes difficult to use as interpretable evidence that
TPL is actually reused.

Function similarity-based works have a significantly higher recall due to the comparison of all
functions. Even ISRDGemini, which directly uses the matched functions as the reuse area, has a
recall of 0.573. After filtering with 3 common edges, LibDB obtains a precision of 0.613 and a recall
of 0.719. However, there is still a big gap between them and LibAM.

Answering to RQ2: Compared to previous methods, which failed in the exact reuse area detection task, LibAM
has demonstrated the feasibility of doing so with 0.985 precision and 0.847 recall. This provides interpretability

of the TPL detection results and is beneficial for downstream tasks.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

LibAM: An Area Matching Framework for Detecting Third-party Libraries in Binaries 52:21

Table 4. TPL Detection Accuracy of Different Optimization Options in x64-x64

00-default O1-default 0O2-default 0O3-default Average

Model =" TP ® ®m| P R F| P R F| P R H

LibDX 055 0.44 0.43]0.80 0.61 065|074 0.61 0.63|0.74 0.61 0.63| 071 0.56 0.58
B2SFinder 0.60 039 0.45]0.60 039 045|058 039 045|058 039 045|059 039 045
ISRDGemini | 0.13 034 0.19| 031 036 0.25]0.33 0.36 0.28]0.22 035 0.27 | 0.25 0.35 0.25
LibDB 038 047 032|044 083 050|047 085 054|045 081 051|044 0.74 0.46
LibAM_41ign | 016 1.0 023017 1.0 024]019 10 026|019 1.0 028|018 1.0 025
LibAM_g4n, | 047 086 058 0.52 096 0.62| 054 0.98 0.63|0.58 0.96 0.67|0.53 0.94 0.62
LibAM 0.90 0.86 0.88(0.94 0.97 0.95|0.94 0.97 0.95(0.93 096 0.94|0.93 0.94 0.93

Table 5. TPL Detection Accuracy of Different Architectures with O2-default Options and Mix

x86-x64 x64-x64 arm-x64 Average Mix

Model ="l P R F®| P R F| P R F|P R T

LibDX 0.74 0.61 0.63]0.74 0.61 0.63] 055 044 0.440.68 0.55 057|066 0.52 0.53
B2SFinder | 0.60 0.39 0.45|0.58 039 045 0.60 0.38 044|059 0.39 044|060 0.39 0.44
ISRDGemini | 033 036 0.26 | 0.33 0.36 0.28 | 0.26 0.33 0.28 | 0.31 0.35 0.28 | 0.24 0.34 0.25
LibDB 043 0.78 0.48|0.47 0.85 054|043 0.63 044|044 0.76 049|040 0.64 0.41
LibAM_g41ign| 0.18 1.0 026|019 1.0 026|016 099 023]018 1.0 025|017 1.0 0.24
LibAM_4pp | 050 0.98 0.62 | 0.54 0.98 0.63 | 0.66 0.94 0.74|0.56 0.97 0.67 | 0.53 0.91 0.63
LibAM 0.97 0.97 0.97]0.94 0.97 0.95|0.97 0.93 0.94|0.96 0.96 0.95|0.90 0.88 0.88

4.5 Answer to RQ3: Accuracy of LibAM in Different Architectures and Optimization
Options

In this evaluation, we aimed to assess the robustness of the works under extreme conditions by

leveraging Dataset_ExtISRD. We designed a series of experiments to test the accuracy of the works

when faced with different compilation option combinations and architectural variations. Our goal

was to evaluate the adaptability of the works in handling various real-world scenarios, ensuring

that they are applicable across a wide range of situations.

Table 4 presents every compilation option combination for x64-x64, where both target and TPL
binaries are in x64. This setup allows us to evaluate the accuracy of the works when dealing with
binaries compiled using various optimization levels and options. By examining how the works
handle these diverse combinations, we can better understand their ability to cope with complex
and challenging scenarios.

In Table 5, we showcase every architecture combination with O2-default options, where target
binaries are compiled with O2 optimization while TPL binaries are compiled using default options.
This experiment is designed to test the works’ robustness when faced with discrepancies between
target and TPL binaries in terms of architectures. This is particularly relevant in real-world IoT
firmware.

The Mix entry in Table 5 represents a combination of all 12 optimization options and archi-
tecture variations. In this experiment, we aimed to evaluate the works’ accuracy under a more
complex and diverse set of conditions, simulating the challenges they may encounter in real-world
situations. By testing the works’ adaptability to this wide range of scenarios, we can gain insights
into their overall robustness and resilience.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

52:22 S. Liet al.

Table 6. Accuracy on Area Detection Task on Dataset_ExtISRD

Model LibDX B2SFinder ISRDGemini LibDB LibAM

P 0.478 0.402 0.131 0.396 0.941
R 0.187 0.262 0.380 0.101 0.462
F1 0.269 0.317 0.195 0.161 0.620

It is important to note that the default compilation option in Dataset_ExtISRD is a mix of O2
and O3 optimization levels, rather than a single optimization level. This choice reflects the reality
of software development, where binaries are often compiled using a combination of optimization
levels to balance accuracy and code size. This mixed optimization setting further enhances the
complexity and diversity of the dataset, providing a more challenging testbed for the works under
evaluation.

LibAM achieved a precision of 0.93 and recall of 0.94 on average for different optimization op-
tions. In different architectures, LibAM achieved a precision of 0.96 and recall of 0.96. LibAM main-
tains a high score across architectures. The cross-optimization option has a greater impact on
LibAM, but LibAM still maintains good results even with the O0 option. These results indicate
that LibAM consistently achieves high accuracy in all environments.

Due to the natural robustness of constant features under different compilation options, the re-
sults of B2SFinder are very stable. In contrast, the accuracy of LibDX [23] is significantly degraded
due to the changes in the order of strings in different environments. The results show that the two
Constant-based works are more stable across optimization options and architectures, but their
scores are not ideal.

The results of both two function similarity-based works vary unstably from one compilation
environment to another. LibDB has a recall rate of up to 0.85, while in the lowest case, it is only
0.47. At the limit of O0, ISRDGemini only gets a precision of 0.13. This is because the homologous
functions obtained by compiling in different environments change a lot, resulting in poor func-
tion similarity matching results. This indicates that the stability of TPL detection using isolated
function matching is poor. In contrast, LibAM greatly reduces the impact of different compilation
environments on function matching results by connecting isolated functions to areas and compar-
ing area similarity, thus filtering out many mistakes.

In Table 6, although LibAM still achieves high scores for the TPL detection task on datasets with
cross-architecture and optimization options, the results for area detection drop significantly. Due to
strict conditional filtering, LibAM still achieves a precision of 0.941 on the area detection task, but
the recall is only 0.462. Nevertheless, LibAM still outperforms all other methods, which have un-
satisfactory results on this challenging task. The reason for the significant decrease in recall is that
the FCG changes across optimization options and architectures, and the Area Detection task is very
demanding, so LibAM ensures high precision through strict filtering, but at the cost of some recall.

In fact, detecting reused areas across optimization options and architectures is a serious chal-
lenge, and this is the first evaluation work. Therefore, the precision and recall of existing methods
are less than satisfactory. Despite this challenging task, LibAM still clearly outperforms other ex-
isting methods, and the high precision rate increases the usability of LibAM. Future proposals of
better function similarity matching tools may further improve the precision. Besides, new area
matching methods are expected to be further proposed in the future to improve the low recall
deficiency.

Figure 10 presents violin plots illustrating the distribution of precision, recall, and F1 value
across various architectures and optimization options. Notably, the results of LibAM are pre-
dominantly clustered around 1.0, demonstrating a significantly superior and more concentrated

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

LibAM: An Area Matching Framework for Detecting Third-party Libraries in Binaries 52:23

1.0 (“) | 10 Q
038 0.8 \\
0.6 06
04 04
02 (\ 0.2 / \
0.0 \/ 00 \ /

LibAM LibDB ISRD_Gemini B2SFinder LibDX LibAM LibDB ISRD_Gemini B2SFinder LibDX
(a) Precision in different architectures (b) Recall in different optimizations
1.0 O 1.0 /\
\ /
0.8 0.8
0.6 : 06
04 04
0.2 0.2
0.0 (00 {
_/) !
LibAM LibDB ISRD_Gemini B2SFinder LibDX LibAM LibDB ISRD_Gemini B2SFinder LibDX
(c) Precision in different architectures (d) Recall in different optimizations
1.0 i 1.0 /
{l
08] 08
0.6 0.6
0.4 0.4 (\
0.2 0.2 /
0.0 \/ 0.0 ‘ \
LibAM LibDB ISRD_Gemini B2SFinder LibDX LibAM LibDB ISRD_Gemini B2SFinder LibDX
(e) F1 value in different architectures (f) F1 value in different optimizations

Fig. 10. Violin plots for each approach in Dataset_ExtISRD. We have shown the distribution of Precision,
Recall, and F1 value under different architectures and optimizations, respectively.

accuracy compared to other methods. The results of LibDB [24] are mainly concentrated around
1.0 and 0.2, attributable to its high recognition accuracy for a limited number of samples that have
fewer reuse relationships, while the accuracy for other samples is generally low. A substantial
number of samples in ISRDGemini [22] close proximity to 0, as relationships with a reuse pro-
portion less than half are frequently undetected by ISRDGemini [22]. The distribution patterns of
the two Constant-based works [21, 23] are similar, exhibiting a polarized distribution between 1.0
and 0. This is because they have good detection accuracy for samples with rich strings, but poor
detection ability for samples with fewer strings.

Answering to RQ3: LibAM is robust under different architectures and different optimization options by
connecting isolated functions into areas on FCG. Optimization options have a severer impact on LibAM than

architecture.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

52:24 S. Liet al.

4.6 Answer to RQ4: Impact of Each Part in LibAM

In order to evaluate the impact of the Anchor Alignment algorithm and the Embedded-GNN al-
gorithm on the accuracy of our proposed LibAM framework, we conducted two separate ablation
experiments, as in Tables 4 and 5. The first variant, LibAM_i4p, is a version of LibAM without the
Anchor Alignment algorithm, while the second variant, LibAM_y,,, is a version of LibAM with-
out the Embedded-GNN algorithm. By analyzing the results of these experiments, we aim to shed
light on the individual contributions of these two algorithms to the overall accuracy of the LibAM
framework. In addition, we conducted sensitivity experiments on the selection of threshold n for
the Anchor Alignment algorithm and tested the trend of precision and recall with changes in the
threshold.

In the case of LibAM_ 4y, after obtaining anchors via function matching, the framework solely
relies on the GNN algorithm to compare the structural similarity of the areas in question. An area is
deemed as a reused area if its structural similarity score surpasses a predetermined threshold value.
While this approach attains a perfect recall score of 1.0 across all tested scenarios, the precision
remains consistently below 0.2. This is primarily due to the presence of numerous similar CFGs
and FCGs within non-homologous functions, which leads to a high rate of false positives. These
results emphasize the vital role of the Anchor Alignment algorithm in further filtering out false
positives and improving the precision of the LibAM framework.

On the other hand, LibAM_,,, disregards the structural similarity of areas altogether. Instead,
after obtaining anchors, it uses only the anchor alignment length to determine whether an area
has been reused. This approach bears a resemblance to the LibDB framework but with a few key
differences. Specifically, LibAM_4,, addresses the overlapping phenomenon present in LibDB by
employing the Anchor Alignment algorithm. This results in a significant improvement in both pre-
cision and recall rates, owing to the strict one-to-one alignment relationship between anchors and
the absence of proportional limitation used in LibDB. However, despite these improvements, a sub-
stantial accuracy gap remains between LibAM_gp, and the full LibAM framework. This indicates
that considering the structural similarity of areas is instrumental in filtering out false positives and
enhancing the overall accuracy of the LibAM framework.

In conclusion, our ablation experiments demonstrate the considerable contributions of both
the Anchor Alignment algorithm and the Embedded-GNN algorithm to the effectiveness of the
LibAM framework. The Anchor Alignment algorithm is crucial for filtering out false positives and
improving precision, while the Embedded-GNN algorithm plays a significant role in further refin-
ing the identification of reuse areas. By incorporating these two algorithms, the LibAM framework
achieves more robust and accurate in detecting TPLs and identifying exact reuse areas.

We further investigated the impact of varying threshold values n within the Anchor Align-
ment algorithms on LibAM’s accuracy in TPL detection tasks, utilizing both Dataset_ISRD and
Dataset_ExtISRD. For this experiment, in Table 7, n values ranged from 1 to 5.

For Dataset_ISRD, the results demonstrate that precision increases progressively with the rise
in n, attaining its maximum at n = 3. This improvement can be attributed to the algorithm’s
enhanced ability to differentiate between true and false reuse relationships as the threshold be-
comes more stringent. Conversely, recall diminishes gradually as n increases, with a substantial
decline observed at n = 4. This decline is likely due to the higher threshold inadvertently exclud-
ing some relevant reuse relationships. Nevertheless, LIbAM demonstrates satisfactory accuracy on
Dataset_ISRD for both n = 3 and n = 4, achieving a balance between precision and recall.

In the case of Dataset_ExtISRD, which comprises samples with more intricate reuse patterns,
precision consistently increases with the growth of n for values less than 4. However, when n is
greater than or equal to 4, the average precision begins to decline, because some samples remain

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

LibAM: An Area Matching Framework for Detecting Third-party Libraries in Binaries 52:25

Table 7. The Impact of Threshold n Selection on TPL Detection Results in
Anchor Alignment Algorithm

Dataset Metrics n=1 n=2 n=3 n=4 n=5

P 0.604 0.794 1.0 1.0 1.0
Dataset ISRD R 0.993 0.993 0.993 0.947 0.804
F1 0.708 0.856 0.996 0.971 0.883
P 623 0.671 0.863 0.811 0.599
Dataset_ ExtISRD R 0.905 0.896 0.848 0.452 0.253
F1 0.704 0.734 0.842 0.533 0.322

Table 8. Efficiency Evaluation

Model Feature extraction Embedding TPL detection Area detection Allppr Allgreq
LibDX 7.5s - 7.5s - 15.1s 15.1s
B2SFinder 7.5s - 70.4s - 77.9s 77.9s
ISRDGemini 38.8s 1.8s 1.1s - 41.8s 41.8s
LibDB 42.5s 1.8s 28.6s - 72.8s 72.8s
LibAM 42.5s 3.4s 8.3s 109.9s 52.7s 162.6s

undetected, which causes a precision of 0. This phenomenon suggests that a higher threshold
might impede the algorithm’s sensitivity to subtle reuse patterns. On the other hand, the recall
still significantly decreases with the increase of n, indicating that larger thresholds are more likely
to miss out on smaller reuse areas. This evaluation indicates the algorithm’s capacity to accurately
discern genuine reuse relationships even in more complex scenarios.

In summary, our experiments reveal that for both datasets, the optimal results are achieved
when n is set to 3. This value represents a balance between precision and recall, allowing LibAM
to effectively identify true reuse relationships while minimizing false positives and false negatives.
These findings have implications for the tuning of the Anchor Alignment algorithm in TPL detec-
tion tasks, shedding light on the importance of selecting appropriate threshold values to optimize
accuracy.

Answering to RQ4: Each component of LibAM plays a crucial role in the final results. The absence of any of

these components can lead to a significant decrease in precision and recall. LibAM can get great robustness

and accuracy by filtering at the function level, area structure level, and area node level.

4.7 Answer to RQ5: Efficient of LIbAM

In this evaluation, we assessed the time cost for detecting Dataset_ISRD and Dataset_ExtISRD as
presented in Table 8. We conducted a comparative analysis of each step in the approaches and
calculated the time required for the TPL detection task and the Area detection task separately to
analyze the efficiency of LibAM in relation to existing works. Feature extraction represents the
Feature Extraction phase, while Embedding represents the function or area embedding phase. TPL
detection refers to the time cost from the completion of the Embedding phase until the TPL de-
tection task is finished, and Area detection refers to the time cost for the Area detection task. The
full-time costs for the TPL detection task and the Area detection task are denoted as Allrp; and
All,req, respectively.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

52:26 S. Liet al.

Table 9. Large-Scale loT Firmware Evaluation

Brand Firmware TPL Average TPL Vul Average vul
Xiaomi 24 1226 51 1950 81
Huawei 14 458 33 1893 135

ASUS 25 808 32 2099 84

Dell 25 192 7 1572 63
Linksys 12 141 12 1433 119
Dahua 19 210 11 1440 76

xiongmai 8 104 13 1268 159
Hikvision 23 128 6 1485 65

D-Link 9 53 6 1462 162

Tplink 5 33 7 261 52

For constant-based works, the most significant time-consuming aspect is the constant
comparison phase. The feature extraction phase in constant-based works, which focuses on
extracting string or other constant features, is much faster than in function similarity-based works.
LibDX [23], which employs only string features accelerated by a backward indexing algorithm, is
the fastest of all methods. On average, LibDX takes only 15.1 seconds to complete the detection
of the target binary. B2SFinder [21], on the other hand, takes a longer time to match features due
to the inability to accelerate the comparison of if/switch features using inverted indexes or prefix
trees like strings or arrays. B2SFinder takes 77.9 seconds to detect a target binary, making it the
most time-consuming of all TPL detection methods.

For function similarity-based works, the most time-consuming process is feature extraction via
IDA Pro. In ISRDGemini, more than 90% of the time is spent on extracting function features. In
LibDB, the TPL detection phase is also time-consuming. However, due to the acceleration strategy
detailed in Section 3, LibAM is faster than both LibDB and B2SFinder in the TPL detection task,
with 80% of the time allocated to feature extraction. While LibAM is more time-consuming in the
area detection task, it is the only method capable of accurately identifying reuse areas.

Furthermore, since only the detected reused relations, rather than all TPLs, are needed to further
identify the reuse areas, the time consumption of the area detection phase is manageable. More-
over, as LibAM uses the top 200 TPLs and top 100 function limits, which are the same as LibDB,
the detection time cost does not increase with the size of the TPL database. This aspect contributes
to the overall efficiency of the LibAM framework when compared to existing works.

Answering to RQ5: LibAM can get high scores in a short time, which is efficient and scalable. With the
optimization strategy, LibAM can even work faster than some existing works for the TPL detection task. The

time consumption of the Area detection task is also in an acceptable range.

4.8 Answer to RQ6: Accuracy of Detecting Large-Scale Reuse Relation

In this evaluation, we evaluated the ability of LibAM to detect large-scale real-world reuse relations
and validated the possibilities of reuse area detection in associating vulnerabilities. Furthermore,
we analyzed the detection results and made several interesting findings.

For target binaries, we selected 10 vendors and collected 30 firmware for each vendor. Then,
we use Binwalk [36] to extract the file system and binaries in firmware. There are 164 firmware
extracted successfully, from which we extracted 12,699 binaries, as in Table 9.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

LibAM: An Area Matching Framework for Detecting Third-party Libraries in Binaries 52:27

100 12
90

80
70
60
50
40
30
20
10

Number of firmware
Number of vendors
)

OF ¢ o8 0 00 3 ot 2)
n\ﬁq‘) &I oo ove(\w o _\“50\\\6 W ot e

S S _oC
e oo O ey

“\xﬂ

R N
o?e“\m o ggﬁ o2 \\Ua‘k\\ e

(a) No. of Firmware (b) No. of Vendors

25 A9 a0k 020 900 4@l o1 a8l
e e e e e o e

9
C

54 S _oC xat N e © S 'S %
W o™ W ope(\\l? @ g9 et o W 2

) e

(c) No. of Binaries (d) No. of CVEs

Fig. 11. The result of loT firmware analyzed by LibAM. 11(a) is the number of firmware by the Top 10 TPLs,
11(b) is the number of vendors by the Top 10 TPLs, 11(c) is the number of binaries by the Top 10 TPLs, and
11(d) is the number of CVEs by the Top 10 CWEs.

For TPL binaries, we first collect the widely used TPLs from Conan [1] and Vepkg [2]. Then, we
compile some well-known projects from Github [3] and SourceForge [4] by ourselves. Besides, we
also extract known TPLs in some Linux-based operating systems. Finally, we selected those with
public vulnerability information and obtained 216 TPL binaries from these candidate TPLs.

LibAM detected ,3353 TPLs, as shown in Table 9. This entire process was completed in 30 hours.
We counted the TPLs with the widest impact range, as shown in Figure 11. Figure 11(a) shows the
top 10 TPLs that are reused in the highest number of firmware and busybox is the most reused
TPL. 11(b) and 11(c) demonstrate the top 10 TPLs with the most influential vendors and binaries
and they are slightly different from the TPLs in Figure 11(a).

In addition to detecting TPLs, we want to further associate vulnerabilities that may be intro-
duced by TPL reuse, which is one of the downstream tasks. Firstly, we conducted a web crawler
to collect the public vulnerability data of detected TPLs from CVE [11] and NVD [12] cites. Then,
we utilized an existing technique [9] to extract all strings from the TPLs of vulnerability-related
versions, enabling us to identify the specific version of the detected TPLs through string match-
ing. After that, we associated 2519 CVEs and generated 14,863 potential vulnerabilities for 167
firmware. In Figure 11(c), we listed the top 10 vulnerability types (CWE) that have the highest
number of CVEs.

Note that many software vulnerabilities affect only partial versions, and we filter non-vulnerable
versions by combining existing version identification works [9]. In addition, lots of TPLs are par-
tially reused, which causes vulnerable functions may not be in the target software [9]. As a result,
existing methods tend to produce numerous false positives when their detected TPLs are directly
associated with a vulnerability. LibAM is expected to solve this problem by reuse area detection
techniques. We can extract the vulnerable function names from patches and match them with the

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

52:28 S. Liet al.

1.0 1.0
0.8 0.8
0.6 0.6
w w
a fa)
o o
0.4 0.4
0.2 0.2
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 2.5 5.0 7.5 10.0 12,5 15.0
Proportion of binary targets reused the same area No. of TPLs with the same area
(a) CDF of the proportion of target binaries (b) CDF of the number of TPLs

Fig. 12. CDF plots of the two findings. 12(a) indicates for each TPL, the proportion of target binaries reuse
the same area of it. 12(b) indicates that for each target binary, the number of TPLs detected in the same area.

reused function names in TPLs detected by the area matching framework. Out of the 2,519 CVEs
that we associated, 1,240 had patches available. This enabled us to further filter the false posi-
tives. After the filtering process, we were able to reduce the number of vulnerabilities associated
with TPL from 36,135 down to 14,863. To explain how LibAM filters incorrect vulnerabilities, we’re
presenting two examples. In the case of CVE-2014-9485, there’s a vulnerability related to Path Tra-
versal in the do_extract_current file function within the minizip library. While both precomp and
Izbench use parts of minizip’s code, they do not use the specific do_extract_current file function.
As a result, there will be two false positive vulnerabilities without area detection. LibAM handles
this by identifying these reused areas and removing the false positives. Additionally, for CVE-2019-
12900, there’s a vulnerability involving an out-of-bounds write operation in the BZ2_decompress
function in version 1.0.6 of the bzip2 library. Versions of minizip from 2.0.0 to 2.7.5 use this vul-
nerable version of bzip2, making them vulnerable to this particular issue. However, lzbench is not
affected because it uses versions of bzip2 released after 1.8. Therefore, identifying the specific li-
brary versions also helps to eliminate incorrect vulnerability warnings.

Furthermore, by analyzing the results, we have the following findings, which demonstrate the
benefits of area detection for discovering complex reuse relationships.

Different target binaries always tend to reuse the same area of TPL. In the detection re-
sults of Dataset_FW, different areas of TPLs have different tendencies to be reused. In Figure12(a),
more than 85.8% of TPLs meet the requirement of having the area reused by more than 50% of the
detected target binaries. Besides, 43.5% of TPLs have more than 90% of target binaries reusing the
same area of it. This finding aligns with the ground truth from the public Dataset_ISRD. For exam-
ple, all four target binaries that reuse the Bzip2 share the same BZ2_bzBufferToBuffCompress and
BZ2_bzBufferToBuffDecompress functions, as well as their respective subfunctions. This suggests
that some areas of code in TPLs are more likely to be reused than others and that vulnerabilities
in these code areas are more widespread in their impact. Consequently, when a code area from a
TPL is identified as being reused, it is more probable that this area will also be reused by other
software. Based on this finding, researchers can allocate additional manual analysis resources to
scrutinize code areas that exhibit a higher likelihood of reuse, thus enhancing the effectiveness of
vulnerability detection and mitigation efforts.

There are numerous identical reuse areas in different TPLs. In Figure 12(b), more than
97.5% of target binaries meet the requirement that the same area is detected to have reuse rela-
tionships with more than two TPLs. Moreover, The same area can be detected in up to 15 different
TPLs. This is also reflected in the ground truth of Dataset ISRD. For instance, [zbench reuses a
large number of functions from precomp, many of which are actually from Brotli. Dataset_ISRD

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

LibAM: An Area Matching Framework for Detecting Third-party Libraries in Binaries 52:29

only analyzes that Izbench reuses precomp and Brotli, but after area detection, we find that these two
reuses are actually the same area of code. This shows that area detection is able to detect complex
reuse relationships. In addition, different areas of the TPLs may represent different functionalities.
Distinguishing between areas that are reused by more TPLs and more specific areas belonging to
only one TPL facilitates further manual analysis, e.g., analysis of areas that are reused more often
will lead to more valuable results.

Answering to RQ6: LibAM can detect real-world TPLs on a large scale. We show one application of LibAM, vul-
nerability associating, by combining it with existing version identification works and vulnerability information.

Besides, we make several interesting findings.

5 DISCUSSION

LibAM achieved high scores on both TPL detection tasks and Reuse area detection tasks. Although
the accuracy of the reuse area detection task was not as high as that of the TPL detection task, we
have proved that the Area Matching framework is feasible, and further research into a better Area
Matching framework is worth pursuing. Moreover, we believe that Area Matching framework at
the FCG level has research prospects for other applications of binary similarity calculation such
as malware detection, software infringement, and patch analysis.

Software reuse relationships are often complicated. We have addressed the issue of partial reuse
through Area Matching framework. The detection at the area level makes the detection granularity
consistent with the reuse granularity, greatly reducing the mistakes caused by existing approaches
that set thresholds for file-level TPLs.

The existing works [22, 24, 28], including LibAM, are based on the results of function similarity
calculation methods. However, even the SOTA function similarity calculation methods may yield
many false positives and false negatives in different optimization options and architectures [37].
Although LibAM has significantly reduced this impact through Area Matching framework, the im-
pact still exists. A better function similarity calculation method can further improve the accuracy
of TPL detection.

LibAM focuses on the improvement of TPL detection at the area level compared to existing
methods, leaving the improvement of the function similarity calculation work itself to help TPL
detection for future research. We performed TPL detection for target binaries with different op-
timization options and architectures to demonstrate the stability of LibAM. We did not do other
similar experiments across compilers, as in IoT firmware, we found that the main impact comes
from the different compilation options, and the compilers tend to be only gcc, with operating sys-
tem mostly based on Linux. We leave the more diverse scenarios for future research.

Some callee functions may be called externally, such as using dynamic links. This can lead to
differences in the target FCG and TPL FCG. However, by using the external dynamic link library
as the target binary for LibAM, we can detect the missed TPLs caused by the FCG difference. In
fact, in Dataset_ISRD, all callee functions are within the binary. The only observed external call
is the use of an additional springboard function for calls to the C standard library function in the
x64 architecture, which resulted in a minor difference from other architectures. Nevertheless, this
difference did not have a significant impact on the detection process.

Some TPL detection works treat different versions of TPL as different libraries [20, 21, 28], and
other TPL detection works also do simple version identification by using the TPL detection tech-
nology [9, 24]. We believe that version identification using coarse-grained features at the library
level is inaccurate because TPL detection aims to detect roughly similar code in a large amount of
different code, while version identification aims to detect fine-grained differences in a large amount

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

52:30 S. Liet al.

of the same code. We consider the TPL detection work as orthogonal to the version identification
work. It is worth noting that LibAM can be directly combined with existing version identification
work, as in Section 4.8, where we use the version identification method in OSSPolice [9].

There is a bias between the list of potential vulnerabilities generated in Section 4.7 and the real
vulnerabilities. Even though we have filtered out many false positives through version and reuse
area location information, the target binary may patch known vulnerabilities or the target binary
vulnerabilities cannot be triggered, which is a common problem faced by all TPL detection works.
Vulnerabilities verifying work [38, 39, 40, 41, 42, 43, 44] need to be done to further verify the quality
of potential vulnerabilities. However, this article has demonstrated the accuracy of TPL detection
and reuse area detection compared with the existing methods, and vulnerability association is
only one application of LibAM. We regard vulnerabilities verifying as orthogonal work for future
research.

6 RELATED WORK
6.1 Binary Function Similarity Calculation

Binary similarity calculation can be applied to various applications, such as reuse detection [22,
24], malware identification [45], vulnerability search [40, 41], patches detection [38, 39, 46], and
so on. Recently, many researchers have focused on binary similarity calculation work.

During the compilation of C/C++ code, many changes occur, and important information is
lost, such as function names, variable names, source comments, data structure definitions, and
so on [27]. Furthermore, the same source code can produce vastly different binaries when com-
piled with different options and architectures, making binary similarity calculation more difficult.
A large number of works have been proposed for binary function similarity calculation.

When discussing text hashing-based approaches like Gitz [47] and VIVA [48], it is important to
consider the inherent limitations of such techniques. While they offer simplicity and efficiency, text
hashing methods can be sensitive to even minor changes in the binary code, potentially leading to
false negatives in similarity detection. Furthermore, these methods may not be as effective when
confronted with obfuscated code or code that has undergone significant transformations during
compilation.

Symbolic execution-based techniques, such as BinSim [45] and Bingo [49], offer a more robust
approach to function similarity detection. By analyzing the possible execution paths and states of
a binary function, these methods can provide a more comprehensive understanding of the under-
lying code. However, symbolic execution can be computationally expensive, particularly for large
or complex codebases, and may be prone to path explosion and state space explosion issues.

Deep learning-based approaches [50-52] have gained traction in recent years due to their abil-
ity to automatically learn feature representations from raw data. These methods can effectively
capture complex patterns and relationships in the binary code, potentially leading to more accu-
rate similarity detection. Nevertheless, deep learning models can be resource-intensive, requiring
significant computational power and training data to achieve optimal accuracy.

The use of NLP techniques, such as JTrans [37], in binary function similarity calculation rep-
resents an innovative approach that leverages the advancements made in natural language pro-
cessing. By treating binary code as a form of language, these methods can apply well-established
NLP techniques to analyze and compare binary functions. However, such approaches may still face
challenges when dealing with the diverse nature of binary code, which can differ significantly from
natural language in terms of structure and semantics.

Incorporating multidimensional features, as suggested by recent research [53, 54], is an essential
step toward improving function similarity matching. By considering features like strings, control

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

LibAM: An Area Matching Framework for Detecting Third-party Libraries in Binaries 52:31

flow graphs, and data flow information, these methods can provide a more holistic view of the
binary code, leading to more accurate and reliable similarity detection. Future research could ex-
plore the integration of various features and their respective weights, enabling more fine-tuned
and adaptable similarity calculation models.

However, with the increase of candidate functions and the emergence of complicated prob-
lems such as function inlining, the accuracy of existing function similarity matching methods is
seriously degraded, and new methods need to be proposed to address this problem. The purpose
of this article is to use the results of the function similarity computation as anchors to evaluate the
improvement brought by the area-level similarity computation for the TPL detection task, without
focusing on the improvement of the function similarity computation task itself.

6.2 Vulnerability Detection

Vulnerability detection has long been a popular and significant field in computer science and cy-
bersecurity. Researchers aim at detecting vulnerabilities in newly developed code by extracting
features from vulnerable functions and determining if these vulnerable functions exist within the
target code. This process typically involves calculating the similarity between functions, which
forms the basis for most vulnerability detection methodologies.

Early works in this field, such as Bingo [49] and SAFE [55], calculated function similarity by
directly comparing the vulnerable function with all functions present in the target code. The re-
sulting function similarity score was then utilized as the vulnerability detection result. However,
these pure function similarity calculations were unable to capture fine-grained features of vul-
nerabilities, such as whether the vulnerabilities were patched or not. Consequently, later research
began to incorporate patch code information to enhance vulnerability detection.

More recent approaches, including MVP [44] and VIVA [48], detect vulnerabilities by employing
data stream slicing techniques to identify the presence of vulnerability code and the absence of
patch code. Additionally, Fiber [38] and PDiff [39] attempt to extract deep patch code semantics by
utilizing symbolic execution to ascertain whether the target vulnerable function has been patched
or not.

Both TPL detection and vulnerability detection work can detect vulnerabilities due to code reuse
or similarity. Their differences lie in the following aspects: Vulnerability detection methodologies
are typically designed to identify vulnerabilities on a small, fine-grained scale, often incorporating
patch information to enhance detection results. In contrast, TPL detection approaches aim to detect
code reuse on a larger scale and can improve detection results of individual vulnerable functions
through global reuse information.

Moreover, TPL detection is not limited to correlating one-day vulnerabilities but can also ana-
lyze software components, detect software plagiarism, correlate malware, and more. Combining
patch information from vulnerability detection methodologies with the global information from
TPL detection approaches may contribute to a more comprehensive and effective vulnerability
detection framework.

By integrating the strengths of both vulnerability detection and TPL detection techniques, re-
searchers can create more robust and accurate systems for identifying and addressing potential
security risks in software development. This holistic approach will ultimately contribute to en-
hancing overall cybersecurity and ensuring the reliability of software systems in various domains.

6.3 Third-Party Libraries Detection

TPLs are essential components of modern software development, as they provide ready-made func-
tionality and enable developers to focus on the core aspects of their applications. However, the

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

52:32 S. Liet al.

introduction of insecure TPLs can bring new threats to software, making the effective detection of
reused TPLs in target software a hot research topic.

Previous works [13-17, 19, 56] have focused on TPL detection tasks in Java, as the Java package
allows for the easy extraction of pseudocode. Consequently, these works on Java code reuse have
proven to be effective. However, C/C++ binaries face more significant challenges in TPL detection,
as much information is stripped and code changes greatly depending on the optimization options
and architectures used.

Recently, several works [9, 22-24] have been proposed to address TPL detection in C/C++ bina-
ries. Some of these works, such as BAT [20], OSSPolice [9], and B2SFinder [21], leverage constant
features as fingerprints to detect TPL. However, they exhibit poor recall in binaries that lack suffi-
cient constant features. Other works, including ISRD [22] and LibDB [24], attempt to use function
similarity calculation technology to detect TPL reuse. CENTRIS [25], for example, employs the
Trending Local Sensitive Hash Algorithm (TLSH) for function similarity calculation to de-
tect TPL reuse. However, due to the impact of different compilation environments, the results of
directly applying function similarity calculation to TPL detection are unsatisfactory [37].

Existing methods often attempt to reduce false positives and false negatives through further
filtering. For instance, ISRD [22] considers reuse by identifying more than half of the function
similarity, while LibDB [24] relies on more than three connected functions on FCGs to judge reuse.
Nevertheless, these filtering methods are based on isolation function matching, and the final results
still contain numerous false negatives and false positives. Furthermore, these methods demonstrate
poor accuracy under different optimization options and architectures.

However, these filtering methods are simple and the final results are still many false negatives
and false positives. They all compare isolated function similarities and filter them with some rules
that lead to poor accuracy under different optimization options and architectures. We try to explore
reuse areas on FCG and conduct area matching rather than isolation function matching to obtain
both high precision and recall.

7 CONCLUSION

In this article, we proposed LibAM, a novel Area Matching framework to transform the TPL detec-
tion task into the TPL reuse area matching task, so as to obtain both high accuracy and robustness.
Meanwhile, we detect specific reuse areas, thus providing interpretable evidence for TPL detection
results and helping to detect complex reuse relationships and downstream tasks.

LibAM stands out from previous methods by overcoming the challenges of exactly detecting
TPLs and identifying exact reuse areas efficiently. Our method demonstrates a marked improve-
ment over SOTA techniques by detecting exact TPLs and achieving ideal results in identifying
reuse areas. To validate the effectiveness and efficiency of LibAM, we conducted extensive ex-
periments across various optimization options and architectural frameworks. The results consis-
tently showed that LibAM outperforms existing SOTA work in TPL detection tasks, making it a
highly desirable solution for a wide range of applications. Furthermore, we evaluated the accu-
racy of LibAM in large-scale and real-world binaries extracted from Internet of Things (IoT)
firmware to investigate its practical applicability. By doing so, we were able to generate a poten-
tial vulnerability list, which can prove invaluable for researchers and practitioners working on IoT
security.

In conclusion, LibAM represents a significant advancement in the field of TPL detection, offering
a comprehensive and efficient solution for detecting exact areas and identifying reuse areas. In
future work, we plan to extend LibAM to overcome other security challenges in the software and
hardware domain, further exploring its wide-ranging applicability and impact.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

LibAM: An Area Matching Framework for Detecting Third-party Libraries in Binaries 52:33

ACKNOWLEDGMENT

We thank the associated editor and anonymous reviewers of TOSEM for their valuable feedback.

REFERENCES

[1] 2023. conan. (2023). Retrieved from https://conan.io/

[2] 2023. Vcpkg. (2023). Retrieved from https://vepkg.io/

[3] 2023. github. (2023). Retrieved from https://github.com/

[4] 2023. Sourceforge. (2023). Retrieved from https://sourceforge.net/

[5] Xian Zhan, Tianming Liu, Lingling Fan, Li Li, Sen Chen, Xiapu Luo, and Yang Liu. 2021. Research on third-party
libraries in android apps: A taxonomy and systematic literature review. IEEE Transactions on Software Engineering
48,10 (2021), 4181-4213.

[6] Synopsys. 2022. Synopsys 2022 open source security and risk analysis report. (2022). Retrieved from https://www.
synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html

[7] 2009. Cisco settles FSF GPL lawsuit. (2009). Retrieved from http://arstechnica.com/information-technology/2009/05/
cisco-settles-fsf-gpl-lawsuit-appoints-compliance- officer

[8] 2015. VMware sued for failure to comply with Linux license. (2015). Retrieved from https://www.zdnet.com/article/
vmware-sued-for-failure-to-comply-with-linuxs-license/

[9] Ruian Duan, Ashish Bijlani, Meng Xu, Taesoo Kim, and Wenke Lee. 2017. Identifying open-source license violation
and 1-day security risk at large scale. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security. 2169-2185.

[10] Binbin Zhao, Shouling Ji, Jiacheng Xu, Yuan Tian, Qiuyang Wei, Qinying Wang, Chenyang Lyu, Xuhong Zhang,
Changting Lin, Jingzheng Wu, et al. 2022. A large-scale empirical analysis of the vulnerabilities introduced by third-
party components in IoT firmware. In Proceedings of the 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis. 442-454.

[11] 2023. CVE. (2023). Retrieved from https://cve.mitre.org/

[12] 2023. NVD. (2023). Retrieved from https://nvd.nist.gov/

[13] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. 2016. Libradar: Fast and accurate detection of third-party
libraries in android apps. In Proceedings of the 38th International Conference on Software Engineering Companion.
653-656.

[14] Michael Backes, Sven Bugiel, and Erik Derr. 2016. Reliable third-party library detection in android and its security
applications. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. 356-367.

[15] Menghao Li, Wei Wang, Pei Wang, Shuai Wang, Dinghao Wu, Jian Liu, Rui Xue, and Wei Huo. 2017. Libd: Scalable
and precise third-party library detection in android markets. In Proceedings of the 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE). IEEE, 335-346.

[16] Yuan Zhang, Jiarun Dai, Xiaohan Zhang, Sirong Huang, Zhemin Yang, Min Yang, and Hao Chen. 2018. Detecting third-
party libraries in android applications with high precision and recall. In Proceedings of the 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 141-152.

[17] Jiexin Zhang, Alastair R. Beresford, and Stephan A. Kollmann. 2019. Libid: Reliable identification of obfuscated third-
party android libraries. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and
Analysis. 55-65.

[18] Xian Zhan, Lingling Fan, Tianming Liu, Sen Chen, Li Li, Haoyu Wang, Yifei Xu, Xiapu Luo, and Yang Liu. 2020.
Automated third-party library detection for android applications: Are we there yet?. In Proceedings of the 2020 35th
IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 919-930.

[19] Xian Zhan, Lingling Fan, Sen Chen, Feng We, Tianming Liu, Xiapu Luo, and Yang Liu. 2021. Atvhunter: Reliable
version detection of third-party libraries for vulnerability identification in android applications. In Proceedings of the
2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE, 1695-1707.

[20] Armijn Hemel, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Dolstra. 2011. Finding software license violations
through binary code clone detection. In Proceedings of the 8th Working Conference on Mining Software Repositories.
63-72.

[21] Zimu Yuan, Muyue Feng, Feng Li, Gu Ban, Yang Xiao, Shiyang Wang, Qian Tang, He Su, Chendong Yu, Jiahuan Xu,
etal. 2019. B2sfinder: Detecting open-source software reuse in cots software. In Proceedings of the 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 1038-1049.

[22] Xi Xu, Qinghua Zheng, Zheng Yan, Ming Fan, Ang Jia, and Ting Liu. 2021. Interpretation-enabled software reuse

detection based on a multi-level birthmark model. In Proceedings of the 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE, 873-884.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

https://conan.io/
https://vcpkg.io/
https://github.com/
https://sourceforge.net/
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
http://arstechnica.com/information-technology/2009/05/cisco-settles-fsf-gpl-lawsuit-appoints-compliance-officer
http://arstechnica.com/information-technology/2009/05/cisco-settles-fsf-gpl-lawsuit-appoints-compliance-officer
https://www.zdnet.com/article/vmware-sued-for-failure-to-comply-with-linuxs-license/
https://www.zdnet.com/article/vmware-sued-for-failure-to-comply-with-linuxs-license/
https://cve.mitre.org/
https://nvd.nist.gov/

52:34 S. Liet al.

(23]

[24]

[25]

[26]
[27]

(28]

[29]
[30]

(31]
(32]
(33]

[34]

[35]

(36]
(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

Wei Tang, Ping Luo, Jialiang Fu, and Dan Zhang. 2020. Libdx: A cross-platform and accurate system to detect third-
party libraries in binary code. In Proceedings of the 2020 IEEE 27th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 104-115.

Wei Tang, Yanlin Wang, Hongyu Zhang, Shi Han, Ping Luo, and Dongmei Zhang. 2022. LibDB: An effective and
efficient framework for detecting third-party libraries in binaries. In Proceedings of the 19th International Conference
on Mining Software Repositories. 423-434.

Seunghoon Woo, Sunghan Park, Seulbae Kim, Heejo Lee, and Hakjoo Oh. 2021. CENTRIS: A precise and scalable
approach for identifying modified open-source software reuse. In Proceedings of the 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 860-872.

Saed Alrabaee, Mourad Debbabi, and Lingyu Wang. 2022. A survey of binary code fingerprinting approaches: Tax-
onomy, methodologies, and features. ACM Computing Surveys (CSUR) 55, 1 (2022), 1-41.

Irfan Ul Haq and Juan Caballero. 2021. A survey of binary code similarity. ACM Computing Surveys (CSUR) 54,
3 (2021), 1-38.

Can Yang, Zhengzi Xu, Hongxu Chen, Yang Liu, Xiaorui Gong, and Baoxu Liu. 2022. ModX: Binary level partially
imported third-party library detection via program modularization and semantic matching. In Proceedings of the 44th
International Conference on Software Engineering. 1393-1405.

Konstantinos G. Derpanis. 2010. Overview of the RANSAC algorithm. Image Rochester NY 4, 1 (2010), 2-3.

Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017. Neural network-based graph embedding
for cross-platform binary code similarity detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. 363-376.

2023. IDA Pro. (2023). Retrieved from https://hex-rays.com/IDA-pro/

2023. annoy. (2023). Retrieved from https://github.com/spotify/annoy

Mark Heimann, Haoming Shen, Tara Safavi, and Danai Koutra. 2018. Regal: Representation learning-based graph
alignment. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management.
117-126.

Rahul Raguram, Ondrej Chum, Marc Pollefeys, Jiri Matas, and Jan-Michael Frahm. 2012. USAC: A universal frame-
work for random sample consensus. IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 8 (2012),
2022-2038.

Weixi Wang. 2012. The Research of Line Matching Algorithm Under the Improved Homograph Matrix Constraint
Condition. The International Archives of the Photogrammetry, Remote Sensing and Spatical Information Sciences,
XXXIX-B3 (2012), 345-350.

2023. Binwalk. (2023). Retrieved from https://www.kali.org/tools/binwalk/

Hao Wang, Wenjie Qu, Gilad Katz, Wenyu Zhu, Zeyu Gao, Han Qiu, Jianwei Zhuge, and Chao Zhang. 2022. jTrans:
Jump-aware transformer for binary code similarity detection. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis. 1-13.

Hang Zhang and Zhiyun Qian. 2018. Precise and accurate patch presence test for binaries. In Proceedings of the 27th
USENIX Security Symposium (USENIX Security 18). 887-902.

Zheyue Jiang, Yuan Zhang, Jun Xu, Qi Wen, Zhenghe Wang, Xiaohan Zhang, Xinyu Xing, Min Yang, and Zhemin
Yang. 2020. Pdiff: Semantic-based patch presence testing for downstream kernels. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security. 1149-1163.

Qian Feng, Minghua Wang, Mu Zhang, Rundong Zhou, Andrew Henderson, and Heng Yin. 2017. Extracting condi-
tional formulas for cross-platform bug search. In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security. 346-359.

Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and Thorsten Holz. 2015. Cross-architecture bug
search in binary executables. In Proceedings of the 2015 IEEE Symposium on Security and Privacy. IEEE, 709-724.

Xin Tan, Yuan Zhang, Chenyuan Mi, Jiajun Cao, Kun Sun, Yifan Lin, and Min Yang. 2021. Locating the Security
Patches for Disclosed OSS Vulnerabilities with Vulnerability-Commit Correlation Ranking. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security. 3282-3299.

Xuezixiang Li, Yu Qu, and Heng Yin. 2021. Palmtree: Learning an assembly language model for instruction embedding.
In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security. 3236-3251.

Yang Xiao, Bihuan Chen, Chendong Yu, Zhengzi Xu, Zimu Yuan, Feng Li, Binghong Liu, Yang Liu, Wei Huo, Wei
Zou, and Wenchang Shi. 2020. {MVP}: Detecting Vulnerabilities using {Patch-Enhanced} Vulnerability Signatures.
In Proceedings of the 29th USENIX Security Symposium (USENIX Security 20). 1165-1182.

Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu. 2017. {BinSim}: Trace-based Semantic Binary Diffing via
System Call Sliced Segment Equivalence Checking. In Proceedings of the 26th USENIX Security Symposium (USENIX
Security 17). 253-270.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

https://hex-rays.com/IDA-pro/
https://github.com/spotify/annoy
https://www.kali.org/tools/binwalk/

LibAM: An Area Matching Framework for Detecting Third-party Libraries in Binaries 52:35

[46]

(47]

(48]

(49]

(50]

(51]

(52]

(53]

(54]

(55]

[56]

Yifei Xu, Zhengzi Xu, Bihuan Chen, Fu Song, Yang Liu, and Ting Liu. 2020. Patch based vulnerability matching for
binary programs. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis.
376-387.

Yaniv David, Nimrod Partush, and Eran Yahav. 2017. Similarity of binaries through re-optimization. In Proceedings of
the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation. 79-94.

Yang Xiao, Zhengzi Xu, Weiwei Zhang, Chendong Yu, Longquan Liu, Wei Zou, Zimu Yuan, Yang Liu, Aihua Piao,
and Wei Huo. 2021. VIVA: Binary Level Vulnerability Identification via Partial Signature. In Proceedings of the 2021
IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 213-224.

Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu, Chia Yuan Cho, and Hee Beng Kuan Tan. 2016. Bingo:
Cross-architecture cross-os binary search. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. 678-689.

Jianguo Jiang, Gengwang Li, Min Yu, Gang Li, Chao Liu, Zhiqiang Lv, Bin Lv, and Weiqing Huang. 2020. Similarity
of binaries across optimization levels and obfuscation. In Proceedings of the European Symposium on Research in
Computer Security. Springer, 295-315.

Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. 2018. Neural code comprehension: A learnable repre-
sentation of code semantics. Advances in Neural Information Processing Systems 31 (2018), 3589-3601.

Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017. Neural network-based graph embedding
for cross-platform binary code similarity detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. 363-376.

Zeping Yu, Rui Cao, Qiyi Tang, Sen Nie, Junzhou Huang, and Shi Wu. 2020. Order matters: Semantic-aware neural
networks for binary code similarity detection. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34.
1145-1152.

Zhenhao Luo, Pengfei Wang, Baosheng Wang, Yong Tang, Wei Xie, Xu Zhou, Danjun Liu, and Kai Lu. 2023. VulHawk:
Cross-architecture vulnerability detection with entropy-based binary code search. NDSS.

Luca Massarelli, Giuseppe Antonio Di Luna, Fabio Petroni, Roberto Baldoni, and Leonardo Querzoni. 2019. Safe: Self-
attentive function embeddings for binary similarity. In Proceedings of the International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment. Springer, 309-329.

Yan Wang, Haowei Wu, Hailong Zhang, and Atanas Rountev. 2018. Orlis: Obfuscation-resilient library detection for
Android. In Proceedings of the 2018 IEEE/ACM 5th International Conference on Mobile Software Engineering and Systems
(MOBILESoft). IEEE, 13-23.

Received 16 May 2023; revised 26 August 2023; accepted 9 September 2023

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 52. Pub. date: December 2023.

	1 INTRODUCTION
	2 PRELIMINARY
	2.1 Problem Description
	2.2 Motivation
	2.3 Definition

	3 METHODOLOGY
	3.1 Overview
	3.2 Area Generation
	3.3 Area Comparison
	3.4 Optimization Strategies

	4 EVALUATION
	4.1 Dataset
	4.2 Compared Methods
	4.3 Answer to RQ1: Accuracy of LibAM in Public Real-World Dataset
	4.4 Answer to RQ2: Accuracy of Detecting Reuse Areas and the Interpretable Evidence for TPL Detection
	4.5 Answer to RQ3: Accuracy of LibAM in Different Architectures and Optimization Options
	4.6 Answer to RQ4: Impact of Each Part in LibAM
	4.7 Answer to RQ5: Efficient of LibAM
	4.8 Answer to RQ6: Accuracy of Detecting Large-Scale Reuse Relation

	5 DISCUSSION
	6 RELATED WORK
	6.1 Binary Function Similarity Calculation
	6.2 Vulnerability Detection
	6.3 Third-Party Libraries Detection

	7 CONCLUSION
	8 ACKNOWLEDGMENT
	REFERENCESendgraf

