
LibvDiff: Library Version Difference Guided OSS Version
Identification in Binaries

Chaopeng Dong, Siyuan Li, Shouguo Yang, Yang Xiao, Yongpan Wang, Hong Li∗, Zhi Li, Limin Sun
{dongchaopeng,lisiyuan,yangshouguo,xiaoyang,wangyongpan,lihong,lizhi,sunlimin}@iie.ac.cn

Institute of Information Engineering, Chinese Academy of Sciences
School of Cyber Security, University of Chinese Academy of Sciences

Beijing, China

ABSTRACT
Open-source software (OSS) has been extensively employed to ex-
pedite software development, inevitably exposing downstream soft-
ware to the peril of potential vulnerabilities. Precisely identifying
the version of OSS not only facilitates the detection of vulnerabili-
ties associated with it but also enables timely alerts upon the release
of 1-day vulnerabilities. However, current methods for identifying
OSS versions rely heavily on version strings or constant features,
which may not be present in compiled OSS binaries or may not be
representative when only function code changes are made. As a
result, these methods are often imprecise in identifying the version
of OSS binaries being used.

To this end, we propose LibvDiff, a novel approach for identi-
fying open-source software versions. It detects subtle differences
through precise symbol information and function-level code changes
using binary code similarity detection. LibvDiff introduces a can-
didate version filter based on a novel version coordinate system
to improve efficiency by quantifying gaps between versions and
rapidly identifying potential versions. To speed up the code simi-
larity detection process, LibvDiff proposes a function call-based
anchor path filter to minimize the number of functions compared in
the target binary. We evaluate the performance of LibvDiff through
comprehensive experiments under various compilation settings and
two datasets (one with version strings, and the other without ver-
sion strings), which demonstrate that our approach achieves 94.5%
and 78.7% precision in two datasets, outperforming state-of-the-art
works (including both academic methods and industry tools) by
an average of 54.2% and 160.3%, respectively. By identifying and
analyzing OSS binaries in real-world firmware images, we make
several interesting findings, such as developers having significant
differences in their updates to different OSS, and different vendors
may also utilize identical OSS binaries.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories; Software notations and tools.

*corresponding author.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0217-4/24/04.
https://doi.org/10.1145/3597503.3623336

KEYWORDS
Open-source software, Version identification, Vulnerability detec-
tion, Firmware analysis

ACM Reference Format:
Chaopeng Dong, Siyuan Li, Shouguo Yang, Yang Xiao, YongpanWang, Hong
Li∗, Zhi Li, Limin Sun. 2024. LibvDiff: Library Version Difference Guided OSS
Version Identification in Binaries. In 2024 IEEE/ACM 46th International Con-
ference on Software Engineering (ICSE ’24), April 14–20, 2024, Lisbon, Portugal.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3597503.3623336

1 INTRODUCTION
Open-source software (OSS) has been extensively employed to expe-
dite software development. The survey report of Forrester [4] shows
that the average number of reused OSS has risen from 36% in 2015
to 75% in 2020. Furthermore, OSS is integrated by more than 90% of
business software from Gatner’s [3] study. However, the wide reuse
of OSS also constantly exposes downstream software to potential
risks. For instance, heartbleed vulnerability [1] in OpenSSL exposes
millions of websites and servers to risk. Similarly, the Ghost vul-
nerability [2] within the glibc has affected a wide range of Linux
systems, such as Debian, Ubuntu, and CentOS. The vulnerabili-
ties of OSS are usually concealed in a specific version range and
patched after a certain version. Identifying vulnerable OSS versions
is a timely manner to mitigate the vulnerability exploitation due to
OSS reuse. An effective version identification tool can not only de-
tect existing software vulnerabilities but also promptly issue alerts
via vulnerability impact range correlation when new vulnerabil-
ities publish. To this end, various version identification methods
have been proposed. The existing related methods can be broadly
categorized into two groups based on the features they utilize.

G1: version string-basedmethods.Thesemethods identify the
OSS version through the detection of OSS version-related strings
within a short time consumption. Pandora [54] and VES [35], uti-
lize string patterns to extract the version strings (e.g., "shd version
%s,%s") in the target binary, and employ control flow analysis and
data flow analysis for real version number inference. OSSPolice [29]
generates regular expressions of various OSS versions and deter-
mines the OSS version by counting the number of matched strings
of each version. LibRARIAN [21] identifies the version by construct-
ing heuristics regular expressions (e.g., "Libpng version 1(\.[0-9]1,)*"
) to match unique strings in binaries. Nevertheless, version string is
not always a permanent and stable feature, since it could be lost or
confused for several reasons, being a challenging problem referred
as P1. First, not all OSS will retain version strings in their binaries
(e.g., freetype). Based on our analysis of 79 OSS with 1,405 versions
obtained from conan [9], only 42.5% of them contain version strings.

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3597503.3623336
https://doi.org/10.1145/3597503.3623336
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597503.3623336&domain=pdf&date_stamp=2024-02-06

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Chaopeng Dong and Siyuan Li, et al.

Second, version strings could be removed by developers for safety
reasons or lost based on different compilation options [41]. Third,
the true version can be confused with other similar strings. On
the one hand, OSS will reuse other OSS and include their strings
in their binaries. For example, libpng v1.4.15 reuses zlib v1.2.11
and both of these two version strings exist in the binary of libpng.
On the other hand, different version strings of the same OSS may
exist in a binary at the same time. For example, "OpenVPN 2.1" and
"OpenVPN 2.3.4" both exist in OpenVPN 2.3.4.

G2: feature matching-based methods. In these methods, dif-
ferent types of features are extracted from source code or binaries as
signatures, and the OSS version is identified based on the matching
score generated by the number of matched features of different ver-
sions. B2SFinder [53] proposes seven different features (e.g., Strings,
Exports, Switch/case, etc) extracted from source code and matches
them in the target binary. To some extent, it mitigates the impact of
version strings missing since more features have been utilized. Nev-
ertheless, code updates may be subtle between OSS versions, some
versions may only update part of functions or add/delete internal
functions which have lost their names in stripped binaries, making
it hard to identify the OSS version precisely (P2). LibvDiff is not
the first one who introduced the binary code similarity detection
(BCSD) technique for version identification, LibDB [41] combines
basic features (i.e., exported function names and string literals) and
function embeddings generated by Gemini [45] together to deter-
mine candidate OSS, followed by calculating the version scores
based on measuring similarities between call graphs. However, it
falls short of addressing the deteriorating precision in function
retrieval, arising from an overabundance of functions. Additionally,
feature matching-based methods have their own efficiency limita-
tions, with an increasing number of candidate versions and the in
the target binary, the time needed for version identification will
significantly increase (P3).

To address the aforementioned problems, we introduce LibvD-
iff, an innovative approach based on version differences that can
precisely and efficiently identify versions of OSS. Unlike methods
that rely solely on version strings in OSS, LibvDiff takes a different
approach by inspecting code changes across distinct versions of
OSS. To this end, LibvDiff initially extracts changes in functions
and string literals by comparing the source code across different
versions. Subsequently, it confirms their existence in compiled bi-
naries and employs them to establish the version differences, which
consist of version-sensitive features (for P1). To enhance the effi-
ciency of the identification process, we propose a candidate version
filter (CVF) that rapidly filters out irrelevant versions based on a
specially-designed version coordinate system and basic features
(i.e., exported function names and string literals). The version co-
ordinate system quantifies the gaps between versions by mapping
them to a two-dimensional plane (for P3). To capture the subtle
differences across versions (i.e., the change of function content),
LibvDiff adopts the BCSD technique to retrieve version-sensitive
functions in the target binary, and compare them with functions
in candidate versions to determine the OSS version (for P2). Ad-
ditionally, we propose an anchor path filter (APF) that utilizes the
call relationship between the exported functions and other inter-
nal functions to minimize the number of functions required in the

target binary. This filter offers two benefits: it saves time by avoid-
ing the generation of features for unnecessary functions, and it
enhances the precision of function retrieval since lots of irrelevant
functions are filtered out (for P3).

We conducted a comprehensive cross-compilation experiment
to demonstrate the scalability of LibvDiff. We extracted version
signatures from one compilation setting and identified versions
from binaries compiled using different architectures (X86, X64,
ARM, and PPC) and optimizations (O0, O1, O2, and O3). We divided
the open-source software into two datasets, D1 and D2, with D1
containing version strings and D2 not containing them. Our re-
sults show that LibvDiff achieved exceptional precision in version
identification across all compilation settings, outperforming the
second-best baseline method B2SFinder by 54.6% in precision for
D2. To demonstrate the improvement of LibvDiff’s CVF and APF,
we conducted an ablation experiment. The results demonstrate that
they enhance precision by 29.5% and 25.9%, respectively, while also
reducing identification time cost by 73.9% and 36.9%, respectively.
We apply LibvDiff to the real-world firmware dataset with 351
distinct firmware images and conducted a comprehensive analysis
of the identification results. 27,440 vulnerabilities caused by 286
CVEs are successfully detected, and 46.2% of them are still affect-
ing the firmware even though the patches are available when the
firmware images are released. In addition, we find that developers
exhibit substantial variations in their updates to various OSS, while
different vendors may also employ identical OSS binaries.

In summary, we have made the following contributions:
• We propose a novel approach LibvDiff that mainly utilizes ver-
sion differences and the BCSD technique to identify the OSS
version precisely even though version strings are absent. It has
two effective modules CVF and APF, which can quickly filter
out irrelevant versions and features to improve precision and
efficiency. The code and dataset of LibvDiff are released at
https://github.com/GentleCP/LibvDiff-public
• We conduct comprehensive experiments on 2,688 binaries across
different compilation settings in two datasets. The experimental
results show that LibvDiff achieves 94.5% and 78.7% precision in
two datasets with only 12.15 seconds per binary, outperforming
the state-of-the-art works by 54.2% and 160.3%, respectively.
• We performed version identification on 351 real-world firmware
and detected 27,440 vulnerabilities. Additionally, by analyzing
open-source software versions, we drew three conclusions that
can inspire and guide firmware security analysis.

2 MOTIVATION EXAMPLE
We illustrate our motivation using the example of two freetype
versions, VER-2-5-4 and VER-2-5-5, as shown in Figure 1. Figure 1a
provides a summary of the differences between the two versions,
including changes in string literals and functions. Neither version
contains any version-related strings, making it impossible to iden-
tify the version using such strings. Moreover, there are no apparent
changes in simple features like string literals or function names be-
tween the two versions. Only two functions, FT_Get_Glyph_Name
and t42_parse_sfnts, have been updated from VER-2-5-4 to VER-2-5-5.
We use the function shown in Figure 1b to illustrate the code update
in the FT_Get_Glyph_Name function between the two versions.

LibvDiff: Library Version Difference Guided OSS Version Identification in Binaries ICSE ’24, April 14–20, 2024, Lisbon, Portugal

FT_Get_Glyph_Name,

t42_parse_sfnts, ...

FT_Cmap_Done,

FT_Done_Size, ...

FT_Get_Glyph_Name,

t42_parse_sfnts, ...

FT_Cmap_Done,

FT_Done_Size, ...

"invalid block
type",

"incorrect data
check", ...

VER-2-5-4

VER-2-5-5

"invalid block
type",

"incorrect data
check", ...

UnchangedChanged

(a) Version differences be-
tween VER-2-5-4 and VER-
2-5-5.

1 FT_Get_Glyph_Name (...)

2 {

3 ...

4 - if ((FT Long)glyph index > face->num glyphs ||

5 - !FT HAS GLYPH NAMES(face))

6 + if ((FT Long)glyph index >= face->num glyphs)

7 + return FT THROW(Invalid Glyph Index);

8 +

9 + if (!FT HAS GLYPH NAMES(face))

10 + return FT THROW(Invalid Argument);

11 ...

12 }

(b) Changed code lines of
FT_Get_Glyph_Name

Figure 1: A motivation example on freetype. Only some func-
tions have been updated from VER-2-5-4 to VER-2-5-5

Traditional version identification approaches, even those that
consider not only version strings but also function names in the
dynamic table, fail to identify the software versions in this case.
Therefore, it is necessary to detect code changes to differentiate
between similar versions. To address this problem, we designed
LibvDiff. Its goal is to differentiate between various versions by
capturing the differences across them and verifying their presence
in the target binary, allowing for appropriate identification of the
true version.

3 METHODOLOGY OVERVIEW
The core idea of LibvDiff is to capture the differences across ver-
sions and verify their presence in the target binary to identify the
OSS version. Figure 2 shows the workflow of LibvDiff, which con-
sists of two primary stages: version signature generation, and OSS
version identification.

During the stage of version signature generation, LibvDiff fo-
cuses on producing three categories of version signatures for the
provided source code and compiled binaries of different versions:
binary features, version differences, and version coordinates. Binary
features are used to capture the code changes, version differences
serve to document the altered features among versions, and version
coordinates measure the gap between versions. Initially, LibvDiff
generates the requisite binary features from the compiled binaries
(§ 4.1). Then, it extracts version-sensitive features (VSFs) by con-
trasting the source code of multiple versions and verifying their
existence in binaries (§ 4.2). Finally, LibvDiff constructs a version
coordinate system and represents the gaps between versions by
mapping them into the system (§ 4.3).

In the OSS version identification stage, for a given binary, LibvD-
iff identifies the version of a specific OSS by verifying the presence
of the version signatures. From the beginning, LibvDiff generate
basic features and version coordinates of the binary in the same
way as the previous stage. Subsequently, candidate versions are ob-
tained by selecting versions in proximity to the target binary based
on the version coordinates and basic features (§ 5.1). Ultimately,
the version is confirmed by comparing the candidate versions one
by one with a well-designed RVG algorithm (§ 5.2).

4 VERSION SIGNATURE GENERATION
In order to distinguish between different versions of OSS, we gen-
erate three types of binary features initially, which can be used for
lightweight filtering and or to improve efficiency and precision in
version identification. The changes of functions and string literals
between the various versions are summarized as version difference.
Using the difference, we construct a version coordinate system
where each OSS version is denoted by a unique coordinate.

4.1 Binary Feature Generation
To capture the code changes across various versions, LibvDiff pri-
marily generates three types of features directly from the compiled
binaries: basic features, function embeddings, and anchor paths.

4.1.1 Basic Feature Generation. The basic features we extract from
the binary of 𝑣𝑖 is represented as 𝐵𝐹𝑣𝑖 = (𝑆

𝑣𝑖
𝑓
, 𝑆

𝑣𝑖
𝑠 , 𝑆

𝑣𝑖
𝑒), where the

three sets are function names, string literals, and exported function
names, respectively. Rather than extracting these directly from the
source code, we obtain them from the compiled binary to ensure
that all relevant features are included. This is because certain parts
of the source code, such as test and example code, may not be
compiled into the main binary [29]. These basic features are used
to filter candidate versions in a coarse-grained manner compared
to detecting code changes, as described in § 5.1.2.

4.1.2 Function Embedding Generation. Function embeddings are
vector representations of functions generated by the BCSD tool,
which are used for calculating function similarity. For version 𝑣𝑖 ,
the function embeddings are represented as 𝐹𝐸𝑣𝑖 = (ℎ1, ℎ2, ..., ℎ𝑛),
whereℎ 𝑗 represents the vector for the 𝑗-th function. In LibvDiff , we
use Asteria [49] as the BCSD tool to generate function embeddings
which are used for calculating function similarity between target
binaries and referenced OSS binaries (i.e., compiled binaries). This
is because Asteria offers support for cross-optimization and cross-
architecture function similarity detection and has been found to
outperform other similar tools [49].

4.1.3 Anchor Path Generation. Using the BCSD tool to calculate
similarities between all functions of two binaries can be time-
consuming. Moreover, as the number of functions increases, the
precision of finding homologous functions decreases. To address
these challenges, we introduce the anchor path in this section and
utilize it to eliminate irrelevant functions as in § 5.2.1.

The anchor path (AP) can be defined as a path that originates
from an exported function and terminates at any internal (i.e., non-
exported) function within the call graph of a stripped binary. It
serves as a dependable mechanism for identifying the target (in-
ternal) functions by leveraging the sequential call relationships
associated with exported functions. Its primary objective is to lo-
cate potential target functions by identifying similar sequential
call relationships, thereby effectively reducing the search space for
function retrieval during the process of version confirmation. This
capability enables us to roughly establish function correspondences
across different binary versions and is based on the fact that both
the exported functions and the call graph retain their stability and
integrity even in stripped binaries, as demonstrated in previous
research works [29, 41, 48, 50, 53].

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Chaopeng Dong and Siyuan Li, et al.

Identified
Version

O
SS

 V
er

si
on

Id
en

tif
ic

at
io

n
(O

nl
in

e)

Compiled
binaries

Ve
rs

io
n

Si
gn

at
ur

e

G

en
er

at
io

n
(O

ff
lin

e)

...

...

Source code
Binary Feature

Generation
Basic Feature

Generation (BFG)

Anchor Path

Generation (APG)

Function Embedding
Generation (FEG)

Version Difference

Extraction

 VSF Extraction

VSF Validation

Signature

Database

Version Confirmation

Candidate Version
Filtering

V1 ... Vn
V1
...
Vn

Version Difference Table (VDT)

Version Coordinate System (VCS)

Version Coordinate

System Construction

Reference Version
Selection

Version Coordinate
Calculation

Version Comparison

Candidate Version

Selection

BFG & Version
Coordinate Calculation

Candidate versions
Target

binary

Anchor Path Filtering

Figure 2: Workflow of LibvDiff

In our work, the call graph is precisely defined as a directed
graph 𝐶𝐺 = (𝑉 , 𝐸), where 𝑉 = {𝑓1, ..., 𝑓𝑛} represents the set of
function nodes, and 𝐸 = {(𝑓𝑖 , 𝑓𝑗) |𝑓𝑖 ∈ 𝑉 , 𝑓𝑗 ∈ 𝑉 } denotes the set of
function call edges. Based on the call graph, the basic unit of AP
named anchor path edge (APE) is defined as (𝑓𝑖 , 𝑐, 𝑓𝑗), 𝑓𝑖 ∈ 𝑉 , 𝑓𝑗 ∈
𝑉 , 𝑐 ∈ {𝑒, 𝑟 }, where 𝑐 represents the call direction and 𝑒, 𝑟 denote the
callee direction and the caller direction, respectively. For instance,
if function 𝑓𝑖 calls function 𝑓𝑗 , the APE from 𝑓𝑖 to 𝑓𝑗 is (𝑓𝑖 , 𝑒, 𝑓𝑗) (i.e.,
𝑓𝑗 is the callee function of 𝑓𝑖) and the APE from 𝑓𝑗 to 𝑓𝑖 is (𝑓𝑗 , 𝑟 , 𝑓𝑖)
(i.e, 𝑓𝑖 is the caller function of 𝑓𝑗).

With these definitions in place, the AP originates from the ex-
ported function 𝑓 𝑘𝑒 (i.e., anchor node) and leads to a target function
𝑓𝑛 is formally defined based on a sequence of APEs as follows:

𝐴𝑃 = ((𝑓 𝑘𝑒 , 𝑐1, 𝑓1), (𝑓1, 𝑐2, 𝑓2), ..., (𝑓𝑛−1, 𝑐𝑛, 𝑓𝑛)), (1)

𝑓𝑖 ∈ 𝑉 , 𝑐 𝑗 ∈ {𝑒, 𝑟 }, 𝑓 𝑘𝑒 ∈ 𝑆𝑒

For example, in Figure 4d, the AP of 4𝑖 -𝑒-6𝑖 -𝑟 -5𝑖 is represented as
((4𝑖 , 𝑒, 6𝑖), (6𝑖 , 𝑟 , 5𝑖)). Algorithm 1 outlines the process of generat-
ing anchor paths using the provided exported functions and the
call graph. For every exported function 𝑓 𝑘𝑒 , we recursively traverse
its callee and caller until we encounter another exported function
or exhaust all nodes in the graph. During the traversal process, we
update the AP by appending the APE from current function 𝑓𝑐𝑢𝑟 to
its callee/caller into the end of the AP from 𝑓 𝑘𝑒 to 𝑓𝑐𝑢𝑟 . Functions
GetCallee and GetCaller at lines 7 and 13 obtain the callee and caller
for a given function in the call graph separately, while the operator
"+" at lines 11 and 17 append an APE to the AP.

4.2 Version Difference Extraction
Version differences denote the modified features (i.e., functions and
string literals) across various versions. It is difficult to distinguish
whether a feature is modified through version updating or com-
pilation options from comparing binaries across versions directly,
owing to varying compilation optimizations, architectures, etc. In
contrast, it is easier to extract VSFs by analyzing the differences be-
tween two specific versions in the source code. Based on the above
considerations, we extract VSFs from the source code and validate

Algorithm 1: Anchor path generation
Input: The set of exported function names 𝑆𝑣𝑖𝑒 and the call

graph 𝐶𝐺
Output: Anchor paths

1 Initialize an empty queue Q and a 2D array 𝐴𝑃 ;
2 for 𝑓 𝑘𝑒 ∈ 𝑆

𝑣𝑖
𝑒 do

3 𝑆visited ← ∅;
4 Q.push(𝑓 𝑘𝑒);
5 while Q do
6 𝑓𝑐𝑢𝑟 ← Q.get();
7 for callee ∈ GetCallee (𝐶𝐺, 𝑓𝑐𝑢𝑟) do
8 if callee ∉ 𝑆

𝑣𝑖
𝑒 and callee ∉ 𝑆visited then

9 Q.push(callee);
10 𝑆visited.push(callee);
11 𝐴𝑃

𝑓 𝑘𝑒 ,callee ← 𝐴𝑃
𝑓 𝑘𝑒 ,𝑓𝑐𝑢𝑟

+ (𝑓𝑐𝑢𝑟 , e, callee);
12 end
13 for caller ∈ GetCaller (𝐶𝐺, 𝑓𝑐𝑢𝑟) do
14 if caller ∉ 𝑆

𝑣𝑖
𝑒 and caller ∉ 𝑆visited then

15 Q.push(caller);
16 𝑆visited.push(caller);
17 𝐴𝑃

𝑓 𝑘𝑒 ,caller ← 𝐴𝑃
𝑓 𝑘𝑒 ,𝑓𝑐𝑢𝑟

+ (𝑓𝑐𝑢𝑟 , r, caller);
18 end
19 end
20 end
21 return 𝐴𝑃

their presence based on function names and strings generated from
compiled binaries.

4.2.1 VSF Extraction. To precisely extract VSFs in the source code,
we analyze the git repository by parsing git diff results of two
different versions and record features which have been modified
as original VSFs. Furthermore, for the sake of extraction efficiency,
we exclusively extract original VSFs across adjacent versions since
the number of OSS version pairs can be numerous (e.g., OSS with
10 versions could have 45 (𝐶2

10) version pairs). For non-adjacent

LibvDiff: Library Version Difference Guided OSS Version Identification in Binaries ICSE ’24, April 14–20, 2024, Lisbon, Portugal

versions, we construct their original VSFs by taking the union of
original VSFs of all adjacent versions among them. To represent
these version-sensitive features, we employ a set notation denoted
as F = (𝑆𝑣𝑖 ,𝑣𝑗

𝑓
, 𝑆

𝑣𝑖 ,𝑣𝑗
𝑠) = ({𝑓1, 𝑓2, ..., 𝑓𝑚}, {𝑠1, 𝑠2, ..., 𝑠𝑛}). In this repre-

sentation, 𝑆𝑣𝑖 ,𝑣𝑗
𝑓

and 𝑆𝑣𝑖 ,𝑣𝑗𝑠 are the set of version-sensitive functions
(e.g., 𝑓𝑖) and version-sensitive strings (e.g., 𝑠 𝑗), respectively.

4.2.2 VSF Validation. To integrate information from both source
and binary aspects, we adopt a straightforward approach by calcu-
lating the intersection and difference between the sets of features.
In particular, we introduce the version difference between versions
𝑣𝑖 and 𝑣 𝑗 as𝑉𝐷𝑣𝑖 ,𝑣𝑗 = (𝑆

𝑣𝑖 ,𝑣𝑗

𝑎𝑓
, 𝑆

𝑣𝑖 ,𝑣𝑗

𝑑𝑓
, 𝑆

𝑣𝑖 ,𝑣𝑗

𝑢𝑓
, 𝑆

𝑣𝑖 ,𝑣𝑗
𝑎𝑠 , 𝑆

𝑣𝑖 ,𝑣𝑗

𝑑𝑠
) to represent

the integrated information, where the five sets denote the added
functions, deleted functions, updated functions, added strings and
deleted strings, respectively. For every VSF in F , we put it into
separate sets by confirming its presence in the basic features of 𝑣𝑖
and 𝑣 𝑗 , as described in Equation (2).

𝑉𝐷𝑣𝑖 ,𝑣𝑗 =



𝑆
𝑣𝑖 ,𝑣𝑗

𝑎𝑓
= 𝑆

𝑣𝑖 ,𝑣𝑗

𝑓
∩ (𝑆𝑣𝑗

𝑓
\ 𝑆𝑣𝑖

𝑓
)

𝑆
𝑣𝑖 ,𝑣𝑗

𝑑𝑓
= 𝑆

𝑣𝑖 ,𝑣𝑗

𝑓
∩ (𝑆𝑣𝑖

𝑓
\ 𝑆𝑣𝑗

𝑓
)

𝑆
𝑣𝑖 ,𝑣𝑗

𝑢𝑓
= 𝑆

𝑣𝑖 ,𝑣𝑗

𝑓
∩ (𝑆𝑣𝑗

𝑓
∩ 𝑆𝑣𝑖

𝑓
)

𝑆
𝑣𝑖 ,𝑣𝑗
𝑎𝑠 = 𝑆

𝑣𝑖 ,𝑣𝑗
𝑠 ∩ (𝑆𝑣𝑗𝑠 \ 𝑆𝑣𝑖𝑠)

𝑆
𝑣𝑖 ,𝑣𝑗

𝑑𝑠
= 𝑆

𝑣𝑖 ,𝑣𝑗
𝑠 ∩ (𝑆𝑣𝑖𝑠 \ 𝑆

𝑣𝑗
𝑠)

(2)

4.3 Version Coordinate System Construction
To narrow down the possible version range of the target binary and
speed up the efficiency of version identification, we introduce a
version coordinate system (VCS) to quantify the positional relation-
ship among all versions. VCS is made up of reference versions and
version coordinates of all versions. The gaps between all versions
and the reference versions are reflected throughout their coordi-
nates in VCS. For the target binary, we can quickly locate similar
versions by mapping it into VCS and filtering out versions that
are too far away. The construction of VCS consists of two parts:
reference version selection and version coordinate calculation.

4.3.1 Reference Version Selection. Reference versions serve to pro-
vide version differences and build version axes. Initially, versions
are sorted by their release dates, and then two versions that contain
sufficient VSFs to detect modified features in other versions are
selected. For the sake of convenience, the oldest version 𝑣𝑜 and the
newest version 𝑣𝑛 are chosen as reference versions.

4.3.2 Version Coordinate Calculation. In VCS, the version coordi-
nate of each version is a tuple, where the values indicate the gaps
between the target binary and the two reference versions. For the
sake of efficiency, only the exported function names are used as
features for calculating version coordinates, as they are stable and
will be preserved in the binary. The version coordinate of 𝑣𝑖 with
respect to the reference versions 𝑣𝑜 and 𝑣𝑛 can be calculated as
follows:

𝑉𝐶𝑣𝑖 = (|𝑆
𝑣𝑜 ,𝑣𝑛
𝑎𝑓

∩ 𝑆𝑣𝑖𝑒 |, |𝑆𝑣𝑜 ,𝑣𝑛𝑑𝑓
∩ 𝑆𝑣𝑖𝑒 |) (3)

The matching number of added and deleted exported function
names reflects the gap from 𝑣𝑖 to 𝑣𝑜 and 𝑣𝑖 to 𝑣𝑛 , respectively.
Example. Figure 3 gives a vivid example of VCS constructed for
freetype, the versions range from 𝑣2.4.0 to 𝑣2.8.1. The coordinates

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

30
v2.4.0-v2.4.1
v2.4.2-v2.4.4
v2.4.5-v2.4.7
v2.4.8
v2.4.10
v2.4.11
v2.4.12v2.5.1

v2.5.2
v2.5.3
v2.5.4-v2.5.5
v2.7.1
v2.8.0
v2.8.1

Figure 3: An example of version coordinates system for
freetype, where 𝑣𝑜 is 𝑣2.4.0, and 𝑣𝑛 is 𝑣2.8.1

of each node in Figure 3 are calculated based on the Equation (3).
As can be seen, the proximity of the release date correlates with
the proximity of the version’s location in VCS. For example, 𝑣2.8.1
is far away from 𝑣2.4.0 since many exported functions have been
added or deleted from 𝑣2.4.0 to 𝑣2.8.1.

5 OSS VERSION IDENTIFICATION
OSS version identification aims to determine the version used in
the target binary 𝐵. For the sake of efficiency, a large number of
versions are filtered out by locating the position of the target binary
in VCS, rather than directly comparing them with 𝐵. Subsequently,
the remaining versions are considered candidate versions and are
compared with 𝐵 to determine the final identified version.

5.1 Candidate Version Selection
Candidate version selection selects the versions that are likely to be
used by the target binary from all versions in the database. The key
idea is filtering versions that are far away from the target binary 𝐵

by mapping 𝐵 into VCS and checking versions with basic features.

5.1.1 Basic Feature Generation & Version Coordinate Calculation.
We generate the basic features (i.e., exported function names and
string literals) and calculate the version coordinate of 𝐵 (denoted
as 𝑉𝐶𝐵 = (𝑋𝐵, 𝑌𝐵)) in the same manner as in § 4.1.1 and § 4.3.2.

5.1.2 Candidate Version Filtering. To narrow down the version
scope, we propose a candidate version filter (CVF) that filters candi-
date versions with two steps. First, for a version 𝑣𝑖 , whose version
coordinate is𝑉𝐶𝑣𝑖 = (𝑋𝑖 , 𝑌𝑖), it is kept when𝑉𝐶𝑣𝑖 meets the condi-
tions:

𝑎𝑏𝑠 (𝑋𝑖 − 𝑋𝐵)
𝑋𝐵

≤ 𝑇1 𝑎𝑛𝑑
𝑎𝑏𝑠 (𝑌𝑖 − 𝑌𝐵)

𝑌𝐵
) ≤ 𝑇1 (4)

where 𝑇1 denotes the threshold for similar versions locating. In
other words, any version that is sufficiently close to 𝐵 will be re-
tained as a potential candidate. Second, we further filter versions
with newly added and deleted basic features in version differences
by comparing versions one by one. If two versions cannot be dis-
tinguished with added and deleted basic features directly, both of
them will be kept as candidate versions. Otherwise, the version
that matches fewer features is filtered out. Ultimately, candidate

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Chaopeng Dong and Siyuan Li, et al.

(a) CG of

r

e

e r

e

e r
r

e e r

e r
r

re

(f) APs of B
e e r

(1) (2)

(3)

(4)

(5)

(3) (4)

0.43

0.96

0.98

0.97

(h) Function similarities

(2)

(1) (3)

(1) (3)

(4) (5)

(1)

(2)

(3) (4)
(1)

(3) (4)

(5)

I. AP generation II. AP filtering

...

...

(b) CG of

(c) CG of B

III. Candidate function
selection

(g) Filtered APs

of B

IV. Function similarity
calculation

7 Version-sensitive
function

Internal functionExported function

Function call

e Callee
IV. Step

r Caller

(1) Path number
(i) Legend

of(e) APs of

of(d) APs of

Figure 4: An example of RVG calculation
versions are sorted by release date order and forwarded to the
subsequent phase for confirmation.

5.2 Version Confirmation
In this section, we further compare candidate versions with the
target binary 𝐵 to identify the OSS version precisely based on candi-
date versions filtered by CVF. The core idea of version confirmation
is that the version used by the target binary can match more signa-
tures than other versions. It has two phases: anchor path filtering
and version comparison.

5.2.1 Anchor Path Filtering. The objective of anchor path filter-
ing is to identify candidate functions within a provided version-
sensitive function 𝑓 . It is based on the anchor path filter (APF)
whose core idea is that homologous functions have the same APs
and can be used to eliminate potential functions from consideration.
Since the internal function names are lost in stripped binaries, we
further introduce the concept of call direction sequence (CDS) to
find functions in the target binary 𝐵. The CDS ignores the names
of the specific functions and comprises the exported function along
with all call directions within the AP defined in Equation (1). It is
defined as follows:

𝐶𝐷𝑆 = (𝑓 𝑘𝑒 , (𝑐1, 𝑐2, ..., 𝑐𝑛)), 𝑓 𝑘𝑒 ∈ 𝑆
𝑣𝑖
𝑒 , 𝑐𝑖 ∈ {𝑒, 𝑟 } (5)

With the help of CDS, we are able to find the target function
𝑓 at the end of the AP by starting from the exported function
𝑓 𝑘𝑒 and following the call directions. It should be noted that one
function may have multiple APs starting from the different ex-
ported functions. In the first step, we generate all APs of 𝐵 as
described in § 4.1.3. Subsequently, for each 𝑓 , we collect its APs
and corresponding CDSs as two sets: 𝑆𝐴𝑃 = {𝐴𝑃1, 𝐴𝑃2, ..., 𝐴𝑃𝑛} and
𝑆𝐶𝐷𝑆 = {𝐶𝐷𝑆1,𝐶𝐷𝑆2, ...,𝐶𝐷𝑆𝑛}. Afterward, APs of 𝐵 whose CDS
is not present in 𝑆𝐶𝐷𝑆 will be filtered out. Eventually, we count the
number of the end nodes of the remaining APs of 𝐵 and choose
the nodes with the highest frequency employed as the candidate
functions for 𝑓 .
Example. For version-sensitive function 5𝑖 in Figure 4d, its an-
chor paths are 4𝑖 -𝑒-6𝑖 -𝑟 -5𝑖 and 3𝑖 -𝑒-5𝑖 and the corresponding CDSs
are (4𝑖 , (𝑒, 𝑟)) and (3𝑖 , (𝑒)), respectively. Thus, the filtered anchor
paths of 𝐵 are 3𝐵-𝑒-5𝐵 , 4𝐵-𝑒-6𝐵-𝑟 -5𝐵 , and 4𝐵-𝑒-6𝐵-𝑟 -7𝐵 since their

Algorithm 2: RVG algorithm
Input: Candidate versions 𝑣𝑖 , 𝑣 𝑗 and the corresponding

binaries 𝐵𝑣𝑖 , 𝐵𝑣𝑗 target binary 𝐵

Output: RVG from 𝐵 to 𝑣𝑖 , 𝑣 𝑗 , denoted as 𝑅𝑉𝐺𝐵,𝑣𝑖 , 𝑅𝑉𝐺𝐵,𝑣𝑗

1 𝑅𝑉𝐺𝐵,𝑣𝑖 , 𝑅𝑉𝐺𝐵,𝑣𝑗 ← 0, 0;
2 𝑆

𝑣𝑖 ,𝑣𝑗

𝑎𝑓
, 𝑆

𝑣𝑖 ,𝑣𝑗

𝑑𝑓
, 𝑆

𝑣𝑖 ,𝑣𝑗

𝑢𝑓
← GetFuncDiff(𝑣𝑖 , 𝑣 𝑗);

3 for 𝑓 ∈ 𝑆𝑣𝑖 ,𝑣𝑗
𝑎𝑓

do
4 if FuncRetrieval (𝑓 , 𝐵𝑣𝑗 , 𝐵) ≥ 𝑇2 then
5 𝑅𝑉𝐺𝐵,𝑣𝑖 ← 𝑅𝑉𝐺𝐵,𝑣𝑖 + 1;
6 end
7 for 𝑓 ∈ 𝑆𝑣𝑖 ,𝑣𝑗

𝑑𝑓
do

8 if FuncRetrieval (𝑓 , 𝐵𝑣𝑖 , 𝐵) ≥ 𝑇2 then
9 𝑅𝑉𝐺𝐵,𝑣𝑗 ← 𝑅𝑉𝐺𝐵,𝑣𝑗 + 1;

10 end
11 for 𝑓 ∈ 𝑆𝑣𝑖 ,𝑣𝑗

𝑢𝑓
do

12 𝑠𝑖𝑚𝑖 𝑓𝑖 ← FuncRetrieval (𝑓 , 𝐵𝑣𝑖 , 𝐵);
13 𝑠𝑖𝑚𝑖 𝑓𝑗 ← FuncRetrieval (𝑓 , 𝐵𝑣𝑗 , 𝐵);
14 if 𝑠𝑖𝑚𝑖 𝑓𝑖 ≥ 𝑇2 𝑜𝑟 𝑠𝑖𝑚𝑖 𝑓𝑗 ≥ 𝑇2 then
15 𝑅𝑉𝐺𝐵,𝑣𝑖 ← 𝑅𝑉𝐺𝐵,𝑣𝑖 + (1 − 𝑠𝑖𝑚𝑖 𝑓𝑖)
16 𝑅𝑉𝐺𝐵,𝑣𝑗 ← 𝑅𝑉𝐺𝐵,𝑣𝑗 + (1 − 𝑠𝑖𝑚𝑖 𝑓𝑗)
17 end
18 return 𝑅𝑉𝐺𝐵,𝑣𝑖 , 𝑅𝑉𝐺𝐵,𝑣𝑗

19 Function FuncRetrieval(𝑓𝑠𝑟𝑐 , 𝐵𝑠𝑟𝑐 , 𝐵𝑡𝑔𝑡):
20 𝑆𝑓 ← AnchorPathFiltering(𝑓𝑠𝑟𝑐 , 𝐵𝑠𝑟𝑐 , 𝐵𝑡𝑔𝑡);
21 return MaxBCSD (𝑓𝑠𝑟𝑐 , 𝑆𝑓);
22 End Function

CDSs meet the requirement. Finally, 5𝐵 is selected as the candidate
function of 5𝑖 due to its frequency being higher than 7𝐵 .

5.2.2 Version Comparison. We adopt the concept of reference ver-
sion gap (RVG) to quantify version differences for two provided
candidate versions, 𝑣𝑖 and 𝑣 𝑗 , in relation to the target binary 𝐵. It
allows us to determine which version is more proximate to 𝐵. By
taking into account the version differences between 𝑣𝑖 and 𝑣 𝑗 , we
use the RVG algorithm 2 to estimate RVG from 𝐵 to 𝑣𝑖 and 𝑣 𝑗 . The
underlying principle of this algorithm is to detect the added and
deleted functions in 𝐵 and evaluate the similarities of the updated
functions between 𝐵 and the provided candidate versions 𝑣𝑖 and 𝑣 𝑗 .
Based on the𝑉𝐷𝑣𝑖 ,𝑣𝑗 , we try to retrieve the added and deleted func-
tions in 𝐵 (line 2 to 10), and calculate the gap between the updated
functions and two versions (line 11 to 18). The function GetFuncDiff,
located at line 2, obtains the version difference of functions for two
specified versions 𝑣𝑖 and 𝑣 𝑗 . It first queries the version-sensitive
functions and function names of two versions and then calculates
the version difference of functions based on the Equation (2). The
function FuncRetrieval, located at line 4, retrieves the target func-
tion (i.e., added, deleted, or updated function) in 𝐵 for the given
function in the source binary. It first uses the APF to filter candidate
functions as described in 5.2.1 (i.e., function AnchorPathFiltering lo-
cated at line 20) and then retrieves the function with the maximum
similarity based on the BCSD tool (i.e., function MaxBCSD located
at line 21).

LibvDiff: Library Version Difference Guided OSS Version Identification in Binaries ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 1: The composition of OSS version dataset

Category OSS Version (#) Binary (#)

Document formatting
libxml2 10 160
libexpat 14 224

Compression
c-blosc 19 304
Zlib 13 208

SDK aws-c-common 26 416

Encryption and TLS protocol
mbedtls 31 496
OpenSSL 20 320

Font rendering freetype 20 320
Image processing libpng 15 240
Total - 168 2688

Example. An illustrative example of RVG calculation is presented
in Figure 4. Figure 4a to Figure 4c depict the call graph of 𝑣𝑖 , 𝑣 𝑗 ,
and 𝐵, respectively. From the beginning (step I), we generate the
APs of two versions and the target binary 𝐵 as Figure 4d to Fig-
ure 4f shows. Afterwards (in step II), we select the APs of the target
binary (𝐵) for each version-sensitive function 𝑓 by filtering those
whose CDS fails to meet the condition outlined in 5.2.1, as illus-
trated in Figure 4g. Next (step III), candidate functions are selected
for each 𝑓 by considering the frequency of end nodes in the fil-
tered APs. Each 𝑓 and its corresponding candidate functions are
((2𝑖 , 1𝐵), (5𝑖 , 5𝐵), (5𝑗 , 5𝐵), (7𝑗 , 7𝐵)) as in Figure 4h. Ultimately (step
IV), the RVGs from 𝐵 to 𝑣𝑖 and 𝑣 𝑗 are calculated based on the similar-
ities between version-sensitive functions and their corresponding
candidate functions as in Figure 4h, which are 1 + (1 − 0.96) = 1.04
and 1 − 0.98 = 0.02, indicating 𝑣 𝑗 is more likely to be used in 𝐵.

With the aforementioned RVG algorithm, we initialize the first
version 𝑣1 as the current identified version 𝑣𝑐𝑢𝑟 . Then we traverse
the remaining versions and compare them with 𝑣𝑐𝑢𝑟 one by one.
For each version pair (𝑣𝑖 , 𝑣𝑐𝑢𝑟) (e.g., (𝑣2, 𝑣𝑐𝑢𝑟)), we calculate 𝑅𝑉𝐺𝐵,𝑣𝑖

and 𝑅𝑉𝐺𝐵,𝑣𝑐𝑢𝑟 , respectively. If 𝑅𝑉𝐺𝐵,𝑣𝑖 is less than 𝑅𝑉𝐺𝐵,𝑣𝑐𝑢𝑟 , in-
dicating that 𝑣𝑖 is more proximate to 𝐵 than 𝑣𝑐𝑢𝑟 , then we update
the current identified version 𝑣𝑐𝑢𝑟 to 𝑣𝑖 . Eventually, the version
that holds the relative minimum RVG is regarded as the identified
version for 𝐵.

6 EXPERIMENTAL SETUP
6.1 Dataset and Experiment Settings
We collected the source code of 9 widely used OSS from Github [13]
and their official websites as Table 1 shows. These OSS can be cate-
gorized into different groups based on their functionality, such as
document formatting, and compression. We compiled the source
code into binaries using different compilation options, including
4 architectures (ARM, X86, X64, PPC) and 4 optimization levels
(O0, O1, O2, O3) with GCC v9.4.0. In total, we obtained 168 distinct
versions of all OSS, resulting in 2688 (168 * 16) binaries as shown
in Table 1. After manual verification on arm-compiled binaries, we
found that three of the collected OSS did not contain version strings,
namely libxml2 [15], aws-c-common [6], and freetype [16]. To evalu-
ate our method’s version identification ability, we constructed two
datasets, D1 comprising OSS with version strings and D2 com-
prising OSS without version strings. There are two categories of
binaries used in all version identification experiments: the source
binaries (i.e., binaries with the source option) and the target binaries

(i.e., binaries with the target option). The former is employed for the
extraction of binary features, while the latter is utilized for version
identification tests. We designed three experiment settings to test
the scalability of each method across different compilation options.
1) CO (cross optimization). The source binaries and the target bi-
naries exhibit different optimizations (i.e., 4 ∗ 3 = 12 combinations)
while sharing the same architecture. Since most binaries in IoT
firmware are using ARM, we select ARM as the same architecture
in CO experiment. 2) CA (cross architecture). The source binaries
and the target binaries exhibit different architectures (i.e., 4 ∗ 3 = 12
combinations) while sharing the same optimization. Since most
default compilation optimization levels are O2, we select O2 as the
same optimization level in the CA experiment. 3) CO+CA. The
source binaries and the target binaries are in different architectures
and optimization simultaneously. More specifically, for CO and
CA experiments, we use binaries in one compilation option (e.g.,
O0/X86) to extract features and identify binaries in the other three
compilation options. For CO+CA experiment, we use binaries in
arm O2 to extract features and identify binaries in other compila-
tion options, namely PPC with O0, O1, and O3, X64 with O0, O1,
and O3 and X86 with O0, O1, and O3, respectively. For each source
and target option pair (e.g., O2 to O3), we employ the precision
(𝑃 = 𝑚

𝑁
) as the metric to assess the effectiveness of each method,

where 𝑁 is the number of tested OSS binaries and𝑚 is the number
of correct identification results. Ultimately, we calculated the final
entry in Table 2 by taking the average precision of all compilation
option pairs (e.g., ARM-O0 and ARM-O2) of all OSS (e.g., OpenSSL)
in the specific experiment (e.g., CO)

6.2 Baselines
We evaluate LibvDiff against recent state-of-the-art methods, in-
cluding three academic approaches and two industrial tools:

• OSSPolice [29]. A state-of-the-art approach that primarily relies
on version string matching to identify OSS versions.
• B2SFinder [53]. A state-of-the-art source to binaryOSS detection
method by comparing 7 constant features between source code
and binaries.
• LibDB [41]. A tool utilizes the BCSD technique and call graph
to detect OSS and identify versions.
• BinaryAI [38]. A state-of-the-art commercial tool that supports
software composition analysis.
• Cybellum [10]. A mature commercial software that supports
software composition analysis.

For the above baselines, we use their original implementations and
default settings. The version identification results of OSSPolice,
B2SFinder, and LibDB rely on the number of matched features of
different versions. The BCSD threshold in LibDB is set to the same
value as indicated in their original paper, specifically 0.8. BinaryAI
and Cybellum are commercial tools with predefined parameters
that cannot be adjusted. To evaluate the contribution of CVF and
APF, we further set up four configurations:

• LibvDiff: the original LibvDiff.
• LibvDiff-C: LibvDiff without CVF.
• LibvDiff-A: LibvDiff without APF.
• LibvDiff-CA: LibvDiff without CVF and APF.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Chaopeng Dong and Siyuan Li, et al.

Table 2: The precision of OSS version identification of two
Dataset in three different experiments

Dataset D1 D2
Experiment CO CA CO+CA CO CA CO+CA
OSSPolice 0.98 0.84 0.84 0.00 0.17 0.22
B2SFinder 0.56 0.56 0.56 0.49 0.51 0.51
BinaryAI 0.97 0.85 0.85 0.20 0.21 0.21
Cybellum 0.80 0.70 0.71 0.44 0.47 0.49
LibDB 0.21 0.15 0.11 0.21 0.16 0.09
LibvDiff-CA 0.88 0.85 0.83 0.44 0.44 0.46
LibvDiff-C 0.94 0.92 0.89 0.74 0.68 0.73
LibvDiff-A 0.99 0.94 0.94 0.73 0.74 0.73
LibvDiff 1.00 0.95 0.95 0.79 0.78 0.79

0.1 0.3 0.5 0.7 0.9
(a) T1

0.4

0.6

0.8

1.0
0.980.99

TPR
FPR

0.1 0.3 0.5 0.7 0.9
(b) T2

0.4

0.5

0.6

0.7

0.8
Precision

Figure 5: Threshold selection
6.3 Implementation
Environment and Tools. LibvDiff is implemented in 2,759 lines
of python code. We employ IDA Pro 7.5 [5] to generate binary
features and pydriller [11] to analyze the source code of OSS. We
retrain the Asteria with the default settings in its paper. All the
experiments were conducted on a server with Intel Xeon 128-core
3.0GHz CPU, 1 TB memory, and 4 GeForce RTX 3090.
Threshold Selection. We explored various values for 𝑇1 and 𝑇2,
ranging from 0 to 1, to determine the optimal thresholds. For 𝑇1,
we use true positive rate 𝑇𝑃𝑅 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 and false positive rate
𝐹𝑃𝑅 = 𝐹𝑃

𝐹𝑃+𝑇𝑁 as the metrics. The TP/FP represents the number of
true/false versions that have been identified as candidate versions,
while the FN/TN signifies the number of true/false versions that are
filtered out by CVF. Through the optimization of both metrics, our
objective is to achieve precise identification of the correct version
(i.e., TPR is 1), while simultaneously maximizing the filtration of
incorrect versions (i.e., low FPR). Based on the result in Figure 5a,
we select a threshold value of 0.2 for 𝑇1 as it achieves a TPR of 1
while maintaining a lower FPR. For 𝑇2, we rely on the precision
of the version identification as the metric, without implementing
CVF. Based on the result in Figure 5b, the precision increases as 𝑇2
rises due to the number of false positive functions decreasing and
reaches the highest when 𝑇2 is 0.95. However, when 𝑇2 is close to
1.0, the precision starts to decline due to an increase in the number
of false negative functions. Consequently, we employ 𝑇2 as 0.95.

7 EVALUATION
Our evaluation aims to answer to the following research questions.
• RQ1. How precise is LibvDiff on different version identification
experiment settings compared to related works? And to what

extent can the precision of identification be improved by CVF
and APF (i.e., ablation study)?
• RQ2. How efficient is LibvDiff for version identification com-
pared to related works? And what are the effects of CVF and APF
in improving efficiency (i.e., ablation study)?
• RQ3. What is the usage of different versions of OSS in real-
world IoT devices? Will OSS be promptly updated to mitigate
vulnerabilities?

RQ1 and RQ2 compare LibvDiff with baselines and evaluate
whether LibvDiff meets P1, P2, P3 described in § 1. RQ3 is an
application of LibvDiff, aiming to analyze the OSS version usage
with corresponding vulnerability and patching status in real-world
firmware.

7.1 RQ1: Precision Evaluation
Table 21 shows the precision of version identification results in
three experiments. The first column reports the names of methods,
and the last six columns represent the precision in different ex-
periment settings. LibvDiff outperforms all the baseline methods
by considerable margins, especially when no version strings are
available (i.e., precision on D2). For CO + CA experiment, LibvDiff
outperforms the second-best method, BinaryAI and B2SFinder, by
11.7% and 54.6% on D1 and D2 separately, indicating better effec-
tiveness for OSS version identification. The results demonstrate
version string is an important factor affecting the effectiveness of
version identification for most methods. The precision of OSSPo-
lice, BinaryAI, and Cybellum rapidly decreases when there are no
version strings available.
Ablation Results. As depicted in Table 2, LibvDiff-C and LibvD-
iff-A significantly enhance the precision by an average of 25.9% and
29.5%, respectively, in comparison to LibvDiff-CA. This is achieved
by filtering out irrelevant functions and versions, respectively. No-
tably, for the D2 dataset, LibvDiff-C and LibvDiff-A demonstrate
an average precision improvement of 60.5% and 65.1%, respectively.
False Prediction Analysis. LibvDiff’s false identification results
are mainly due to two reasons. (1) No code changes between binary
versions. We find that some code changes between versions are not
compiled into binaries (e.g., example, test code), or some versions
are only updated to adapt to different platforms. The false identifi-
cation for these versions is reasonable and it will not impact the
discovery of vulnerabilities. (2) Undetectable subtle changes. Some
versions with small modifications cannot be effectively identified
due to the limitations of the BCSD tool. Specifically, non-syntactic
structural changes, such as the modification of parameters and local
data types between versions are challenging to identify in Asteria.

Answer to RQ1. LibvDiff exhibits exceptional precision
in all experiment settings, with an average increase in
precision of 54.2% and 160.3% in two datasets in the CO+CA
experiment. By employing CVF or APF, LibvDiff enhances
its precision by 29.5% and 25.9%, in contrast to LibvDiff
without them, respectively, and achieve the optimal results
(0.95 in D1 and 0.79 in D2) when both utilized in tandem.

1The table in detail (i.e., with specific target option) is available at
https://github.com/GentleCP/LibvDiff-public/blob/master/imgs/RQ1_data_detail.png

LibvDiff: Library Version Difference Guided OSS Version Identification in Binaries ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 3: The time cost of different methods. "FG" and "VI"
denote feature generation and version identification, respec-
tively.

Method
D1 D2

FG (s) VI (s) Total (s) FG (s) VI (s) Total (s)
OSSPolice 0.06 0.10 0.16 0.06 0.06 0.12
B2SFinder 6.85 8.40 15.25 8.50 4.53 13.03
LibDB 35.72 118.60 154.30 34.36 137.60 171.96
BinaryAI - - 17.93 - - 26.74
Cybellum - - 3.86 - - 5.36
LibvDiff-CA 62.40 3.91 66.31 115.90 10.65 126.55
LibvDiff-C 40.80 2.74 43.55 72.57 5.54 78.11
LibvDiff-A 10.61 0.01 10.63 39.56 0.19 39.75
LibvDiff 7.75 0.01 7.76 16.46 0.07 16.53

7.2 RQ2: Efficiency Evaluation
Table 3 shows the time cost for the two phases, feature generation
and version identification, of each method. The time for feature
generation in BinaryAI and Cybellum cannot be ascertained, hence
we record the duration of the entire identification process directly.
As can be seen, OSSPolice takes the least time cost in two datasets
(0.161s, 0.117s), followed by Cybellum, LibvDiff, B2SFinder, Bina-
ryAI, and LibDB in that order. The primary factor behind LibvDiff’s
time consumption is the feature generation process, while LibDB
also displays elevated costs in feature generation. The improved
efficiency of version identification in LibvDiff can be attributed to
version-sensitive features, which obviates the need for redundant
features. In addition, the utilization of CVF and APF allows LibvDiff
to efficiently eliminate irrelevant versions and select potential func-
tions for individual comparison, resulting in a significant reduction
in time cost for identifying OSS versions. More specifically, LibvD-
iff reduces time cost by 88.3% and 86.9% in D1 and D2 separately,
compared to LibvDiff-CA which lacks CVF and APF.

Answer to RQ2. On average, LibvDiff takes 12.1 seconds
to identify one OSS binary. While LibvDiff boasts supreme
identification accuracy, it does come with a tradeoff of
accuracy and time cost. Through the integration of CVF
and APF, LibvDiff reduces an average time cost of 73.9%
and 36.9%, respectively, compared to LibvDiff without
either of them.

7.3 RQ3: Real-world Firmware Analysis
we collected firmware images from 8 IoT vendors and extracted
binaries using binwalk [7]. To ensure precise identification of the
version, we expanded the number of candidate versions in the
database by conducting a manual analysis of OSS versions in both
the oldest and latest firmware for each model. Additionally, we
collected vulnerabilities related to OSS in the dataset from NVD[20]
and official OSS websites[8, 12]. Our vulnerability dataset comprises
a total number of 473 vulnerabilities, ranging from the year 2002
to 2022. For each identified firmware OSS version, we ascertain
the impact of the vulnerability on the corresponding binary by
verifying whether it falls within the scope of the affected version
of the vulnerability.

A-
AC

53
00

A-
AC

68
U

A-
AC

86
U

A-
AC

88
U

H-
W

S8
80

L-E
A6

90
0

M-
Ro

ut
er

OS

2006
2008
2010
2012
2014
2016
2018
2020
2022

Da
te FRD

OpenSSL used
OpenSSL latest
expat used
expat latest

2016

2017

2018

2019

2020

2021

(a) The version update trend of OpenSSL and expat in different mod-
els, where A is "ASUS", H is "Huawei", L is "Linksys", M is "MikroTik",
and FRD denotes firmware release date

ASUC
Huaw

ei
Intel

Lin
ksy

s

Mikro
Tik

NETG
EAR

Ubiquiti WD
0

500

1000

1500

2000

2500

3000

Da
y

OpenSSL
expat

libxml2
Zlib

freetype
libpng

(b) The version update frequency of different OSS in different ven-
dors, where WD is "Western-Digital"

Figure 6: The usage of OSS versions in different vendors and
corresponding models

Zlib libxml2 expat OpenSSL
0

1

2

3

4

5

Th
e

nu
m

be
r o

f m
od

el
s

1.2.5

1.2.11 2.9.4

2.7.7 2.0.1

1.0.2p1.0.2o

1.0.2n 1.0.2l

1.0.2k

ASUS
Huawei

Linksys
Intel

Figure 7: The top10 frequently used OSS binaries with their
versions

The statistic results of the real-world dataset analysis are pre-
sented in Table 42. The first column gives the statistical metrics
which include the minimum (Min), the maximum (Max), and the
average (Avg). The second and third columns show the quantity of
firmware and binaries, while the fourth and fifth columns are the
number of vulnerabilities that satisfy the corresponding conditions.
Furthermore, the values of the sixth and seventh columns denote the
proportion of vulnerabilities that are ignored even though patches
are already available before firmware release and the proportion
of vulnerabilities that have been patched during the updating of
firmware in the same model. In the end, the eighth column reveals
the patching delay. As can be seen, (1) many outdated versions of
2The table in detail (i.e., results of different vendors) is available at
https://github.com/GentleCP/LibvDiff-public/blob/master/imgs/RQ3_data_detail.png

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Chaopeng Dong and Siyuan Li, et al.

Table 4: The statistic results of the real-world dataset anal-
ysis. VDD, FRD, and PRD are abbreviations of vulnerability
disclose date, firmware release date, and patch release date,
respectively. 𝑉𝐷𝐷 < 𝐹𝑅𝐷 denotes that the vulnerability was
disclosed before the firmware release. X is "libxml2", E is "ex-
pat", S is "OpenSSL", Z is "Zlib", F is "freetype", P is "libpng".

Firm
(#)

Bin
(#)

Vulnerability per firmware Patching status1

𝑉𝐷𝐷 < 𝐹𝑅𝐷

and
𝑃𝑅𝐷 < 𝐹𝑅𝐷 (#)

𝑉𝐷𝐷 < 𝐹𝑅𝐷

(#)
Prop (%) Prop (%) Delay (day)

Min 6 24 5.6 6.1 82.5 - -6.62

Max 59 182 133.2 136.4 98.7 - 837.5

Avg 22 93 47.2 48.7 94.9
X: 21.4, E: 0.0,
P: 0.0, S: 81.9,
Z: 0.0, F: 0.0

352.3

1 We confirm whether the vulnerability has been patched by verifying the firmware
of the same model but different versions, and only count vulnerabilities whose
patches are available before the last firmware version.

2 The vulnerability has been patched before it was published.

OSS are still in use even though the patches are already avail-
able, occupying an average proportion of 94.9%. Moreover,
the high patching delay also exposes devices to long-period
threats from attackers.

After that, we further investigate the usage of OSS versions in
different vendors and correspondingmodels as in Figure 6. Figure 6a
and Figure 6b have shown the version update trend and frequency
of multiple OSS. The blue solid line in Figure 6a represents the
firmware release date while the other four solid and dashed lines
represent the release date of the OSS versions used in firmware
and the latest OSS versions before firmware release, respectively.
Take the position where the gray dashed line intersects the curve
in the graph as an example, it means when ASUS-AC5300 384.5.0
released on 2018/05/14, it used the latest OpenSSL version which
was released on 2018/03/27, and it still used the expat which released
on 2007/06/05, even if the latest expat was released on 2017/08/02.
Additionally, lines within the corresponding segment (i.e., separated
by white spaces) pertain to the identical model, such as ASUS-
AC68U. Figure 6b shows the version update frequency of different
OSS, counting by the average number of days. Each bar in Figure 6b
denotes the different OSS version update frequencies in the same
model of a specific vendor. For example, the first bar indicates
that OpenSSL used in ASUC RT-AC5300 takes 117 days on average
for version updates while Zlib takes 1955 days. Noted that any
shadowed bar (i.e., bar with "//") represents that OSS has not been
updated at all. Based on the analysis of the above two figures, we
can find that (2) developers have significant differences in their
updates to different OSS. OpenSSL demonstrates a heightened
frequency of updates in contrast to other OSS. We infer this is
because of its frequent interaction with external entities, which
makes it more vulnerable to attacks.

Figure 7 represents the top-used binaries in the real-world dataset,
each bar in Figure 7 denotes an identical binary (i.e., with the same
hash value). We surprisingly observed that (3) some identical OSS
binaries are utilized across different models, even for differ-
ent vendors. We manually examine these models and find that all

of them are based on the same project Asuswrt-Merlin [19], a third-
party alternative firmware, which also explains why their version
update trends are so similar. This also greatly increases the risk of
different vendors being affected by the same OSS vulnerability.

Answer to RQ3. Analysis results demonstrate that Anal-
ysis results demonstrate that a significant number of
firmware contain outdated OSS versions, despite the avail-
ability of patched versions, and different OSS have varying
update priorities, as reflected in their respective update
frequencies. Unfortunately, most vulnerabilities were ei-
ther neglected or not addressed promptly, resulting in an
average patch delay of 352 days.

8 DISCUSSION
Function Similarity Calculation. We acknowledge that despite
the utilization of APF to mitigate the impact of irrelevant functions,
it is still possible to encounter false negatives and false positives
due to certain limitations in the BCSD tool. However, it is worth
noting that the BCSD tool implemented in our framework can be
substituted with a more effective method if one becomes avail-
able. Furthermore, the current implementation of the BCSD tool
necessitates the use of binaries of different versions, which poses
challenges when binaries are not available. To address this lim-
itation, we propose two potential solutions. The first approach
involves acquiring and downloading binaries from third-party web-
sites such as Fedora [14], Libraries [17], and Pakgs [18]. The second
approach involves utilizing a source-to-binary BCSD tool, such as
CodeCMR [52], which only requires the source code of the OSS.
More Programming Languages. LibvDiff currently supports
C/C++-based binaries because of their popularity (i.e., widely used
in firmware). However, the core idea of LibvDiff which involves ex-
tracting version differences and comparing them with the target, is
applicable to other programming languages as well. When adapting
LibvDiff to other programming languages, it is necessary to make
adjustments to the tools used for feature generation and function
similarity calculation in order to accommodate the characteristics
of those languages. We leave the support for more programming
languages for future work.
Threats to Validity. (1) The first threat is the two thresholds used
for identification. Since it is inevitable to eliminate all the false
negatives and false positives due to the minor difference across OSS
versions and binary functions, we selected the thresholds through
a reasonable experimental design to minimize the threat. (2) The
second threat arises from the code obfuscation [25, 40, 42–44]. The
semantics of functions are significantly impacted by code obfusca-
tion, leading to a decrease in the precision and recall of BCSD. We
acknowledge that addressing this threat remains challenging and
leave it for future work.

9 RELATEDWORK
In this section, we review the closely relatedworks in two directions:
OSS version identification and binary code similarity detection.

OSS Version Identification. Various approaches have been pro-
posed to identify the version of OSS binaries. In the early stage,
most prior works rely on version strings or related information in

LibvDiff: Library Version Difference Guided OSS Version Identification in Binaries ICSE ’24, April 14–20, 2024, Lisbon, Portugal

target binary to identify OSS versions. Pandora[54] and VES [35]
utilize string patterns to locate version strings in the target binary
and recover the version number with control flow analysis and data
flow analysis, respectively. OSSPolice [29] and LibRARIAN [21]
generate regular expressions to match version strings. These meth-
ods heavily rely on the existence of version strings in target binaries
and will fail when there are no version strings available. Works after
that mainly focus on utilizing more features extracted from source
code or binaries of OSS. B2SFinder[53] utilizes seven kinds of code
features that are traceable in both binary and source code to detect
OSS in binaries. LibDB[41] and FirmSec [55] introduce the BCSD
tool and combine basic features to filter out candidate versions and
determine the OSS version with the call graph matching score and
the number of matched features, respectively.

These works either rely heavily on version strings or treat differ-
ent versions as different OSS for version identification. Therefore,
they may generate false positives when there are no version strings
available or the changes between versions are subtle. Our work
only focuses on the different parts across versions and captures
fine-grained version changes by introducing the BCSD technique
and useful function filter. Thus, it can significantly improve the
precision of identification results.

Binary Code Similarity Detection. Binary code similarity detec-
tion has drawn much attention for its wide range of applications,
such as bug search [26, 27, 36], malware detection [22, 23, 37],
and patch analysis[30, 33, 46]. DCC [39] normalize the binary in-
structions and calculate the function similarity by cutting the func-
tion with a sliding window. TRACY [28] divides the function with
tracelet to address the basic block merging problem. DiscovRE [31]
computes the similarity between functions by combining structural
and numeric features. Genius [32] proposes attributed CFG (ACFG)
and utilizes a clustering algorithm to encode functions. BinGo [24]
and BinGo-E [47] use multiple kinds of features (i.e., syntax, se-
mantics, and emulation features) to find similar functions. With
the development of deep learning and natural language process-
ing (NLP), the BCSD methods which integrate these technologies
outperform other traditional schemes. Gemini [45] first integrates
ACFG used in Genius and a neural network to embed functions as
vectors. VulSeeker[34] add the data flow information by labeling
the write and read memory instructions to ACFG to achieve bet-
ter performance. Yu [51] applies the most popular NLP technique
BERT to pretrain the binary code and use three kinds of semantic-
aware, structural-aware, and order-aware features (o.e., semantic,
structural, and order) to embed the function.

The flourishing development of BCSD technology provides sup-
port for us to capture functional semantic changes between versions.
They can efficiently and effectively retrieve similar functions in
binaries. However, using the BCSD tool directly also brings chal-
lenges in precision since non-homologous functions may mislead
the retrieval results, which drives us to propose APF.

10 CONCLUSION
This work proposes a version difference-based OSS version identi-
fication approach, named LibvDiff. It optimally exploits version-
sensitive features to discriminate between versions and employs
the binary code similarity detection (BCSD) technique to capture

the functional semantics. To improve the precision and efficiency,
LibvDiff proposes two effective filters, namely CVF and APF that
reduce the quantity of compared versions and functions for re-
trieval. The experimental results show that LibvDiff achieves a
high precision with relatively little time consumption. Our analy-
sis of real-world dataset drew reveals three conclusions that can
inspire and guide firmware security analysis.

11 ACKNOWLEDGEMENT
We appreciate all the anonymous reviewers for their invaluable com-
ments and suggestions. This work is partly supported by National
Key Research and Development Program of China (No.2022YFB3103
904), National Natural Science Foundation of China (No.62202462,
No.61931019), and the Chinese Young Scientists Fund of the Na-
tional Natural Science Foundation (No.62002342). Any opinions,
findings and conclusions in this paper are those of the authors and
do not necessarily reflect the views of the funding agencies.

REFERENCES
[1] 2014. CVE-2014-0160. https://nvd.nist.gov/vuln/detail/cve-2014-0160.
[2] 2015. CVE-2015-0235. https://nvd.nist.gov/vuln/detail/cve-2015-0235.
[3] 2020. Market Guide for Software Composition Analysis. https://www.gartner.

com/doc/reprints?id=1-26OO2IJ6&ct=210630&st=sb.
[4] 2021. The Forrester Wave: Software Composition Analysis, Q3 2021. https:

//reprints2.forrester.com/assets/2/679/RES176091/report.
[5] 2022. The best-of-breed binary code analysis tool, an indispensable item in the

toolbox of world-class software analysts, reverse engineers, malware analyst and
cybersecurity professionals. https://hex-rays.com/ida-pro/.

[6] 2022. Core c99 package for AWS SDK for C. Includes cross-platform primitives,
configuration, data structures, and error handling. https://github.com/awslabs/
aws-c-common.

[7] 2022. A fast, easy to use tool for analyzing, reverse engineering, and extracting
firmware images. https://github.com/ReFirmLabs/binwalk.

[8] 2022. The official PNG reference library. http://www.libpng.org/pub/png/libpng.
html.

[9] 2022. The open source, decentralized and multi-platform package manager to
create and share all your native binaries. https://conan.io/.

[10] 2022. A platform supports manage cybersecurity and cyber compliance across
the entire lifecycle. https://tomato.groov.pl/.

[11] 2022. Python Framework to analyse Git repositories. https://github.com/ishepard/
pydriller.

[12] 2022. TLS/SSL and crypto library. https://github.com/openssl/openssl.
[13] 2023. A code hosting platform where over 100 million developers shape the

future of software, together. https://github.com/.
[14] 2023. The Fedora Project is an independent project[2] to coordinate the develop-

ment of Fedora Linux. https://admin.fedoraproject.org/mirrormanager/.
[15] 2023. A free replacement for Adobe’s enscript program. https://gitlab.gnome.

org/GNOME/libxml2.
[16] 2023. A freely available software library to render fonts. https://gitlab.freedesktop.

org/freetype/freetype.
[17] 2023. Libraries.io monitors 6,373,004 open source packages across 32 different

package managers, so you don’t have to. https://libraries.io/.
[18] 2023. Packages for Linux and Unix. https://pkgs.org/.
[19] 2023. A third party alternative firmware based on Asuswrt-Merlin project, for

different routers. https://xvtx.ru/xwrt/.
[20] 2023. The U.S. government repository of standards based vulnerability manage-

ment data represented using the Security Content Automation Protocol (SCAP).
https://nvd.nist.gov/.

[21] Sumaya Almanee, Arda Ünal, Mathias Payer, and Joshua Garcia. 2021. Too Quiet
in the Library: An Empirical Study of Security Updates in Android Apps’ Native
Code. 2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE) (2021), 1347–1359.

[22] Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. 2006. Detecting Self-
mutating Malware Using Control-Flow Graph Matching. In International Confer-
ence on Detection of intrusions and malware, and vulnerability assessment.

[23] Silvio Cesare, Yang Xiang, and Wanlei Zhou. 2014. Control Flow-Based Malware
VariantDetection. IEEE Transactions on Dependable and Secure Computing 11
(2014), 307–317.

[24] Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu, Chia Yuan
Cho, and Hee Beng Kuan Tan. 2016. BinGo: cross-architecture cross-OS binary

https://nvd.nist.gov/vuln/detail/cve-2014-0160
https://nvd.nist.gov/vuln/detail/cve-2015-0235
https://www.gartner.com/doc/reprints?id=1-26OO2IJ6&ct=210630&st=sb
https://www.gartner.com/doc/reprints?id=1-26OO2IJ6&ct=210630&st=sb
https://reprints2.forrester.com/assets/2/679/RES176091/report
https://reprints2.forrester.com/assets/2/679/RES176091/report
https://hex-rays.com/ida-pro/
https://github.com/awslabs/aws-c-common
https://github.com/awslabs/aws-c-common
https://github.com/ReFirmLabs/binwalk
http://www.libpng.org/pub/png/libpng.html
http://www.libpng.org/pub/png/libpng.html
https://conan.io/
https://tomato.groov.pl/
https://github.com/ishepard/pydriller
https://github.com/ishepard/pydriller
https://github.com/openssl/openssl
https://github.com/
https://admin.fedoraproject.org/mirrormanager/
https://gitlab.gnome.org/GNOME/libxml2
https://gitlab.gnome.org/GNOME/libxml2
https://gitlab.freedesktop.org/freetype/freetype
https://gitlab.freedesktop.org/freetype/freetype
https://libraries.io/
https://pkgs.org/
https://xvtx.ru/xwrt/
https://nvd.nist.gov/

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Chaopeng Dong and Siyuan Li, et al.

search. Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (2016).

[25] Christian S. Collberg, Sam Martin, Jonathan Myers, and Jasvir Nagra. 2012. Dis-
tributed application tamper detection via continuous software updates. In Asia-
Pacific Computer Systems Architecture Conference.

[26] Yaniv David, Nimrod Partush, and Eran Yahav. 2017. Similarity of binaries
through re-optimization. Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation (2017).

[27] Yaniv David, Nimrod Partush, and Eran Yahav. 2018. FirmUp: Precise Static De-
tection of Common Vulnerabilities in Firmware. Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Languages and
Operating Systems (2018).

[28] Yaniv David and Eran Yahav. 2014. Tracelet-based code search in executables.
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation (2014).

[29] Ruian Duan, Ashish Bijlani, Meng Xu, Taesoo Kim, and Wenke Lee. 2017. Identi-
fying Open-Source License Violation and 1-Day Security Risk at Large Scale. In
CCS. 2169–2185.

[30] Thomas Dullien. 2005. Graph-based comparison of Executable Objects.
[31] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla. 2016. discovRE:

Efficient Cross-Architecture Identification of Bugs in Binary Code. In NDSS.
[32] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng

Yin. 2016. Scalable Graph-Based Bug Search for Firmware Images. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security.
480–491.

[33] Debin Gao, Michael K. Reiter, and Dawn Xiaodong Song. 2008. BinHunt: Au-
tomatically Finding Semantic Differences in Binary Programs. In International
Conference on Information, Communications and Signal Processing.

[34] Jian Gao, Xin Yang, Ying Fu, Yu Jiang, and Jiaguang Sun. 2018. VulSeeker: A
Semantic Learning Based Vulnerability Seeker for Cross-Platform Binary. In ASE.
896–899.

[35] Xulun Hu, Weidong Zhang, Hong Li, Yan Hu, Zhaoteng Yan, Xiyue Wang, and
Limin Sun. 2020. VES: A Component Version Extracting System for Large-Scale
IoT Firmwares. In WASA, Dongxiao Yu, Falko Dressler, and Jiguo Yu (Eds.),
Vol. 12385. 39–48.

[36] He Huang, Amr M. Youssef, and Mourad Debbabi. 2017. BinSequence: Fast,
Accurate and Scalable Binary Code Reuse Detection. Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Security (2017).

[37] Christopher Krügel, Engin Kirda, Darren Mutz, William K. Robertson, and Gio-
vanni Vigna. 2005. Polymorphic Worm Detection Using Structural Information
of Executables. In International Symposium on Recent Advances in Intrusion De-
tection.

[38] Tencent Security Keen Lab. 2022. BinaryAI. https://www.binaryai.cn/.
[39] Andreas Sæbjørnsen, Jeremiah Willcock, Thomas Panas, Daniel J. Quinlan, and

Zhendong Su. 2009. Detecting code clones in binary executables. In International
Symposium on Software Testing and Analysis.

[40] Monirul I. Sharif, Andrea Lanzi, Jonathon T. Giffin, and Wenke Lee. 2009. Auto-
matic Reverse Engineering of Malware Emulators. 2009 30th IEEE Symposium on
Security and Privacy (2009), 94–109.

[41] Wei Tang, Yanlin Wang, Hongyu Zhang, Shi Han, Ping Luo, and Dongmei Zhang.
2022. LibDB: An Effective and Efficient Framework for Detecting Third-Party
Libraries in Binaries. In MSR. arXiv:2204.10232

[42] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pablo García Bringas.
2015. SoK: Deep Packer Inspection: A Longitudinal Study of the Complexity of
Run-Time Packers. 2015 IEEE Symposium on Security and Privacy (2015), 659–673.

[43] Irfan ul Haq, Sergio Chica, Juan Caballero, and Somesh Jha. 2017. Malware
Lineage in the Wild. Comput. Secur. 78 (2017), 347–363.

[44] Dongpeng Xu, Jiang Ming, Yu Fu, and Dinghao Wu. 2018. VMHunt: A Verifiable
Approach to Partially-Virtualized Binary Code Simplification. Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security (2018).

[45] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017. Neu-
ral Network-Based Graph Embedding for Cross-Platform Binary Code Similarity
Detection. In CCS. 363–376.

[46] Yifei Xu, Zhengzi Xu, Bihuan Chen, Fu Song, Yang Liu, and Ting Liu. 2020. Patch
based vulnerability matching for binary programs. Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis (2020).

[47] Yinxing Xue, Zhengzi Xu, Mahinthan Chandramohan, and Yang Liu. 2019. Accu-
rate and Scalable Cross-Architecture Cross-OS Binary Code Search with Emula-
tion. IEEE Transactions on Software Engineering 45 (2019), 1125–1149.

[48] Can Yang, Zhengzi Xu, Hongxu Chen, Yang Liu, Xiaorui Gong, and Baoxu Liu.
2022. ModX: Binary Level Partially Imported Third-Party Library Detection via
Program Modularization and Semantic Matching. 2022 IEEE/ACM 44th Interna-
tional Conference on Software Engineering (ICSE) (2022), 1393–1405.

[49] Shouguo Yang. 2021. Asteria: Deep Learning-Based for Cross-Platform Binary
Code Similarity Detection. In DSN. 13.

[50] Shouguo Yang, Chaopeng Dong, Yang Xiao, Yiran Cheng, Zhiqiang Shi, Zhi Li,
and Limin Sun. 2023. Asteria-Pro: Enhancing Deep-Learning Based Binary Code
Similarity Detection by Incorporating Domain Knowledge. ArXiv abs/2301.00511

(2023).
[51] Zeping Yu, Rui Cao, Qiyi Tang, Sen Nie, Junzhou Huang, and Shi Wu. 2020. Order

Matters: Semantic-Aware Neural Networks for Binary Code Similarity Detection.
In AAAI, Vol. 34. 1145–1152.

[52] Zeping Yu, Wenxin Zheng, Jiaqi Wang, Qiyi Tang, Sen Nie, and Shi Wu. 2020.
CodeCMR: Cross-Modal Retrieval For Function-Level Binary Source Code Match-
ing. In NeurIPS. 12.

[53] Zimu Yuan, Muyue Feng, Feng Li, Gu Ban, Yang Xiao, Shiyang Wang, Qian Tang,
He Su, Chendong Yu, Jiahuan Xu, Aihua Piao, Jingling Xuey, and Wei Huo. 2019.
B2SFinder: Detecting Open-Source Software Reuse in COTS Software. In ASE.
1038–1049.

[54] Weidong Zhang, Yu Chen, Hong Li, Zhi Li, and Limin Sun. 2018. PANDORA: A
Scalable and Efficient Scheme to Extract Version of Binaries in IoT Firmwares. In
2018 IEEE International Conference on Communications (ICC). 1–6.

[55] Binbin Zhao, Shouling Ji, Jiacheng Xu, Yuan Tian, Qiuyang Wei, Qinying Wang,
Chenyang Lyu, Xuhong Zhang, Changting Lin, Jingzheng Wu, and Raheem A.
Beyah. 2022. A large-scale empirical analysis of the vulnerabilities introduced by
third-party components in IoT firmware. Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis (2022).

https://www.binaryai.cn/
https://arxiv.org/abs/2204.10232

	Abstract
	1 Introduction
	2 Motivation Example
	3 Methodology Overview
	4 Version Signature Generation
	4.1 Binary Feature Generation
	4.2 Version Difference Extraction
	4.3 Version Coordinate System Construction

	5 OSS Version Identification
	5.1 Candidate Version Selection
	5.2 Version Confirmation

	6 Experimental Setup
	6.1 Dataset and Experiment Settings
	6.2 Baselines
	6.3 Implementation

	7 Evaluation
	7.1 RQ1: Precision Evaluation
	7.2 RQ2: Efficiency Evaluation
	7.3 RQ3: Real-world Firmware Analysis

	8 Discussion
	9 Related work
	10 Conclusion
	11 Acknowledgement
	References

